
Verification Intellectual Property
(VIP) Recommended Practices

Version 1.0

August 25, 2009

Copyright© 2008-2009 by Accellera. All rights reserved.

Notices

Accellera Standards documents are developed within Accellera and the Technical Committees of Accellera
Organization, Inc. Accellera develops its standards through a consensus development process, approved by
its members and board of directors, which brings together volunteers representing varied viewpoints and
interests to achieve the final product. Volunteers are not necessarily members of Accellera and serve without
compensation. While Accellera administers the process and establishes rules to promote fairness in the con-
sensus development process, Accellera does not independently evaluate, test, or verify the accuracy of any
of the information contained in its standards.

Use of an Accellera Standard is wholly voluntary. Accellera disclaims liability for any personal injury, prop-
erty or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory,
directly or indirectly resulting from the publication, use of, or reliance upon this, or any other Accellera
Standard document.

Accellera does not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaims any express or implied warranty, including any implied warranty of merchantability or
suitability for a specific purpose, or that the use of the material contained herein is free from patent infringe-
ment. Accellera Standards documents are supplied “AS IS.”

The existence of an Accellera Standard does not imply that there are no other ways to produce, test, measure,
purchase, market, or provide other goods and services related to the scope of an Accellera Standard. Further-
more, the viewpoint expressed at the time a standard is approved and issued is subject to change due to
developments in the state of the art and comments received from users of the standard. Every Accellera
Standard is subjected to review periodically for revision and update. Users are cautioned to check to deter-
mine that they have the latest edition of any Accellera Standard.

In publishing and making this document available, Accellera is not suggesting or rendering professional or
other services for, or on behalf of, any person or entity. Nor is Accellera undertaking to perform any duty
owed by any other person or entity to another. Any person utilizing this, and any other Accellera Standards
document, should rely upon the advice of a competent professional in determining the exercise of reasonable
care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they
relate to specific applications. When the need for interpretations is brought to the attention of Accellera,
Accellera will initiate action to prepare appropriate responses. Since Accellera Standards represent a consen-
sus of concerned interests, it is important to ensure that any interpretation has also received the concurrence
of a balance of interests. For this reason, Accellera and the members of its Technical Committees are not
able to provide an instant response to interpretation requests except in those cases where the matter has pre-
viously received formal consideration.

Comments for revision of Accellera Standards are welcome from any interested party, regardless of mem-
bership affiliation with Accellera. Suggestions for changes in documents should be in the form of a proposed
change of text, together with appropriate supporting comments. Comments on standards and requests for
interpretations should be addressed to:

Accellera Organization
1370 Trancas Street #163
Napa, CA 94558
USA
ii Verification Intellectual Property Recommended Practices Version 1.0

Note: Attention is called to the possibility that implementation of this standard may require use of
subject matter covered by patent rights. By publication of this standard, no position is taken with
respect to the existence or validity of any patent rights in connection therewith. Accellera shall not
be responsible for identifying patents for which a license may be required by an Accellera standard
or for conducting inquiries into the legal validity or scope of those patents that are brought to its
attention.

Accellera is the sole entity that may authorize the use of Accellera-owned certification marks and/or trade-
marks to indicate compliance with the materials set forth herein.

Authorization to photocopy portions of any individual standard for internal or personal use must be granted
by Accellera Organization, Inc., provided that permission is obtained from and any required fee is paid to
Accellera. To arrange for authorization please contact Lynn Horobin, Accellera, 1370 Trancas Street #163,
Napa, CA 94558, phone (707) 251-9977, e-mail lynn@accellera.org. Permission to photocopy portions of
any individual standard for educational classroom use can also be obtained from Accellera.

Suggestions for improvements to the Verification Intellectual Property Recommended Practices are wel-
come. They should be sent to the VIP email reflector

vip-tc@lists.accellera.org

The current Working Group’s website address is

www.accellera.org/activities/vip

Introduction

The purpose of this set of recommended practices is to address a significant industry need to make
verification intellectual property (VIP) interoperate. To increase productivity, many companies are opting to
use electronic design automation (EDA) solutions for verification methodologies. The advantage of these
methodologies is they are pre-packaged to abstract away and compartmentalize many of the standard
components used by verification teams. A methodology and supporting library is given to the validation
teams, which is then used to construct and create a verification environment.

However, there are several competing methodologies, the two most significant being the Open Verification
Methodology (OVM)a from Cadence and Mentor and the Verification Methodology Manual (VMM) from
Synopsys. Both open source methodologies are compelling solutions, but both approach the problem of
structuring and building a verification environment in significantly different ways. Ultimately, both
methodologies are packaged as a set of base class libraries along with a reference document of how to use
the libraries and their best practices. Much of the underlying details are hidden from end-users, thereby
enabling abstraction. End-user companies typically have a handful of expert users who understand the
technology well enough to use it, but not well enough to modify the underlying libraries.

Now, companies are looking seriously at being able take existing VIP from one methodology and use it with
VIP from the other methodology. Typically, legacy code is written in one methodology and companies
either want to migrate to the other or they need to use existing VIP from the other library. The integration at
times can be straight forward, like attaching a protocol monitor, but often the work is extensive and requires
a significant amount of knowledge about both methodologies to make them interoperate correctly.

This document offers a solution to the VIP interoperability issue. It starts out by stepping the user through a
high-level overview, which is intended to quickly redirect the user to the practice(s) that address their

aFor information on references, see Chapter 2.
Version 1.0 Verification Intellectual Property Recommended Practices iii

specific circumstances. The recommended practices chapter provides solutions for the various challenges a
verification environment creator faces when integrating a VIP from a different methodology. There is also a
chapter containing the application programming interfaces (APIs) associated with this interoperability
document, defining a proposed reference library.

This document is not intended to be read linearly, but to serve as a cookbook which guides the user through
the process of creating a verification environment made of components from different methodologies.

Selection of the interoperability model

When deciding on the type of interoperability this set of recommended practices would support, the VIP
Technical SubCommittee (TSC) identified two interoperability models: interconnected and encapsulated.
The VIP TSC then chose to only support the interconnected model within this document.

To put users in the right context as to how interoperability can be achieved, the different interoperability
models are described here. The user should really only care about the interconnected model and just be
aware of any others.

a) The interconnected model enables taking a VIP component implemented using a class library and
using it within an environment along with other VIPs implemented using another base class library.
This model requires the user handling the interoperability to have a good understanding of both
VMM and OVM. This model does not require changes to the original VIP interface.

Since the VIP TSC decided to deal only with the interconnected model, this document only
describes interconnected model best practices.

b) The encapsulated model requires wrapping a VIP component implemented using a base class library
within a wrapper implemented using the other base class library, so the user is not aware when he/
she is using a VIP component originally implemented in a different methodology. In this case, the
wrapper is responsible for mapping the functions required by the user's methodology to the appro-
priate functions provided in the original methodology.

Contributors

The following individuals contributed to the creation, editing, and review of the Verification Intellectual
Property Recommended Practices.

Tom Alsop Intel Corporation VIP Workgroup Co-Chair

Janick Bergeron Synopsys Inc.

Dennis Brophy Mentor Graphics

Joe Daniels Technical Editor

Ken Davis Freescale Semiconductor

Adam Erickson Mentor Graphics

Joshua Filliater Denali Software Inc.

Tom Fitzpatrick Mentor Graphics

Bill Flanders Intel Corporation

JL Gray Verilab

David Jones XtremeEDA

Dhrubajyoti Kalita Intel Corporation

Adiel Khan Synopsys Inc.

Neil Korpusik Sun Microsystems

Stan Korlikoski Cadence Design Systems
iv Verification Intellectual Property Recommended Practices Version 1.0

Sanjiv Kumar Denali Software Inc.

Jay Lawrence Cadence Design Systems

Hiller Miller Freescale Semiconductor VIP Workgroup Co-Chair

 Michael Rohleder Freescale Semiconductor

Sharon Rosenburg Cadence Design Systems

Ambar Sarkar Paradigm Works Inc.

Adam Sherer Cadence Design Systems

Mark Strickland Cisco Systems

Amre Sultan XtremeEDA

Yatin Trivedi Synopsys Inc.

Alex Wakefield Synopsys Inc.
Version 1.0 Verification Intellectual Property Recommended Practices v

vi Verification Intellectual Property Recommended Practices Version 1.0

Contents

1. Overview.. 1

1.1 Purpose ... 1
1.2 Scope .. 1
1.3 Recommended practices template .. 1
1.4 Conventional notations... 2
1.5 Contents of this document.. 2

2. Normative references ... 3

3. Definitions, acronyms, and abbreviations.. 3

3.1 Definitions.. 3
3.2 Acronyms and abbreviations.. 4

4. Integrating verification components .. 5

4.1 Motivation .. 5
4.2 Interoperability vs. migration... 5
4.3 Integrating mixed methodologies... 6
4.4 Learning OVM and VMM ... 6
4.5 Reusing infrastructure .. 6

4.5.1 Choosing the level of reuse ... 6
4.5.2 Grouping the foreign component(s) and adapters into a container 7

4.6 Instantiating the foreign component(s) in a testbench ... 8
4.6.1 Instantiating and connecting components ... 8
4.6.2 Configuring testbenches ... 8

4.7 Creating reusable sequences/scenarios... 9
4.7.1 Creating sequences/scenarios for a single stream ... 9
4.7.2 Developing system-level multi-channel sequences (multi-stream scenarios) 9

4.8 Writing tests ... 9
4.9 Running simulations, debugging them, and tracing any messages .. 9

5. Recommended practices .. 11

5.1 OVM-on-top phase synchronization .. 12
5.1.1 Practice name .. 12
5.1.2 Intent ... 12
5.1.3 Applicability ... 12
5.1.4 Structure .. 13
5.1.5 Collaboration .. 15
5.1.6 Implementation ... 15
5.1.7 Sample code .. 16

5.2 VMM-on-top phase synchronization ... 17
5.2.1 Practice name .. 17
5.2.2 Intent ... 17
5.2.3 Applicability ... 17
5.2.4 Structure .. 17
5.2.5 Collaboration .. 20
5.2.6 Implementation ... 20
5.2.7 Sample code .. 21
Version 1.0 Verification Intellectual Property Recommended Practices vii

5.3 Meta-composition... 21
5.3.1 Practice name .. 21
5.3.2 Intent ... 22
5.3.3 Applicability ... 22
5.3.4 Structure .. 22
5.3.5 Collaboration .. 23
5.3.6 Implementation ... 23
5.3.7 Sample code .. 23
5.3.8 Printing the environment topology ... 28

5.4 VIP configuration... 29
5.4.1 Practice name .. 29
5.4.2 Intent ... 29
5.4.3 Applicability ... 29
5.4.4 Structure .. 30
5.4.5 Collaboration .. 30
5.4.6 Implementation ... 30
5.4.7 Sample code .. 30

5.5 Data conversion.. 31
5.5.1 Practice name .. 31
5.5.2 Intent ... 31
5.5.3 Applicability ... 32
5.5.4 Structure .. 32
5.5.5 Collaboration .. 32
5.5.6 Implementation ... 32
5.5.7 Sample code .. 33

5.6 TLM to channel .. 34
5.6.1 Practice name .. 34
5.6.2 Intent ... 34
5.6.3 Applicability ... 35
5.6.4 Structure .. 35
5.6.5 Collaboration .. 37
5.6.6 Implementation ... 40
5.6.7 Sample code .. 40

5.7 Channel to TLM... 41
5.7.1 Practice name .. 41
5.7.2 Intent ... 41
5.7.3 Applicability ... 42
5.7.4 Structure .. 42
5.7.5 Collaboration .. 45
5.7.6 Implementation ... 47
5.7.7 Sample code .. 47

5.8 Analysis to channel / Channel to analysis .. 48
5.8.1 Practice name .. 48
5.8.2 Intent ... 49
5.8.3 Applicability ... 49
5.8.4 Structure .. 49
5.8.5 Collaboration .. 51
5.8.6 Implementation ... 51
5.8.7 Sample code .. 51

5.9 Notify to analysis / Analysis to notify.. 53
5.9.1 Practice name .. 53
5.9.2 Intent ... 53
5.9.3 Applicability ... 53
5.9.4 Structure .. 53
viii Verification Intellectual Property Recommended Practices Version 1.0

5.9.5 Collaboration .. 55
5.9.6 Implementation ... 55
5.9.7 Sample code .. 55

5.10 Callback adapter ... 57
5.10.1 Practice name .. 57
5.10.2 Intent ... 57
5.10.3 Applicability ... 58
5.10.4 Structure .. 58
5.10.5 Collaboration .. 59
5.10.6 Implementation ... 59
5.10.7 Sample code .. 59

5.11 Sequence and scenario composition... 60
5.11.1 Practice name .. 60
5.11.2 Intent ... 61
5.11.3 Applicability ... 61
5.11.4 Structure .. 61
5.11.5 Collaboration .. 61
5.11.6 Implementation ... 62
5.11.7 Sample code .. 62

5.12 Messaging... 65
5.12.1 Practice name .. 65
5.12.2 Intent ... 66
5.12.3 Applicability ... 67
5.12.4 Structure .. 67
5.12.5 Collaboration .. 68
5.12.6 Implementation ... 68
5.12.7 Sample code .. 68

6. Application programming interface (API)... 71

6.1 Common parameters .. 71
6.1.1 OVM ... 71
6.1.2 OVM_REQ ... 71
6.1.3 OVM_RSP .. 71
6.1.4 VMM .. 71
6.1.5 VMM_REQ .. 71
6.1.6 VMM_RSP ... 71
6.1.7 OVM2VMM ... 71
6.1.8 OVM2VMM_REQ ... 71
6.1.9 OVM2VMM_RSP .. 72
6.1.10 VMM2OVM ... 72
6.1.11 VMM2OVM_REQ ... 72
6.1.12 VMM2OVM_RSP .. 72

6.2 avt_converter #(IN,OUT)... 72
6.2.1 Declaration .. 72
6.2.2 Parameters ... 72
6.2.3 Methods .. 72

6.3 avt_match_ovm_id ... 73
6.3.1 Declaration .. 73
6.3.2 Parameters ... 73
6.3.3 Methods .. 73

6.4 avt_ovm_vmm_env.. 73
6.4.1 Hierarchy .. 73
6.4.2 Declaration .. 74
Version 1.0 Verification Intellectual Property Recommended Practices ix

6.4.3 Methods .. 74
6.4.4 Variables ... 76

6.5 avt_vmm_ovm_env.. 76
6.5.1 Hierarchy .. 76
6.5.2 Declaration .. 77
6.5.3 Methods .. 77
6.5.4 Macros .. 78

6.6 avt_tlm2channel ... 78
6.6.1 Hierarchy .. 78
6.6.2 Declaration .. 78
6.6.3 Parameters ... 79
6.6.4 Communication interfaces .. 79
6.6.5 Methods .. 79
6.6.6 Variables ... 80

6.7 avt_channel2tlm ... 80
6.7.1 Hierarchy .. 80
6.7.2 Declaration .. 81
6.7.3 Parameters ... 81
6.7.4 Communication interfaces .. 81
6.7.5 Methods .. 82
6.7.6 Variables ... 82

6.8 avt_analysis_channel.. 83
6.8.1 Hierarchy .. 83
6.8.2 Declaration .. 83
6.8.3 Parameters ... 83
6.8.4 Communication interfaces .. 84
6.8.5 Methods .. 84

6.9 avt_analysis2notify... 84
6.9.1 Hierarchy .. 84
6.9.2 Declaration .. 85
6.9.3 Parameters ... 85
6.9.4 Communication interfaces .. 85
6.9.5 Methods .. 85
6.9.6 Variables ... 85

6.10 avt_notify2analysis... 86
6.10.1 Hierarchy .. 86
6.10.2 Declaration .. 86
6.10.3 Parameters ... 86
6.10.4 Communication interfaces .. 86
6.10.5 Methods .. 87
6.10.6 Variables ... 87

Appendix A Bibliography... 89
x Verification Intellectual Property Recommended Practices Version 1.0

1. Overview

This chapter defines the scope and purpose of the Verification Intellectual Property (VIP) recommended
practices, highlights the basic concepts related to using this document, and summarizes the remainder of
these recommended practices.

1.1 Purpose

This document’s purpose is to assist the environment verification engineer to design and implement an Open
Verification Methodology (OVM) environment that needs to import and use Verification Methodology
Manual (VMM) VIP or a VMM environment that needs to import and use OVM VIP. The document can
also assist the VMM and OVM VIP developer on how to best package the VIP so it can work effectively in
the respective OVM and VMM environments.

There are some scenarios for which this document can assist the verification community.

— A VIP provider provides a VMM VIP to an OVM house or vice-versa.

— A VMM house decides to transition to OVM or vice-versa. With this, they can continue to use their
pre-existing VIP components.

— A system house needs to integrate designs independently verified using OVM and VMM into a
VMM or OVM-based top-level verification environment.

— A company that has its own base class and would like to migrate to OVM or VMM can implement a
similar solution based on this one.

1.2 Scope

The scope of the document is to deal with all types of OVM and VMM IEEE Std 1800™-compliant1 VIP.

1.3 Recommended practices template

Each “best practice” is described using the following template. See also Chapter 5.

Practice name and classification: A descriptive and unique name that helps in identifying and referring to
the practice.

Also known as: Other names for the practice.

Related practices: Other practices that have some relationship with the practice; discussion of the
differences between the practice and similar practices.

Intent: A description of the goal behind the practice and the reason for using it.

Motivation (forces): A scenario consisting of a problem and a context in which this practice can be used.

Consequences: A description of the results, side effects, and trade-offs caused by using the practice.

Applicability: Situations in which this practice is usable; the context for the practice.

Structure: A graphical representation of the practice. Class diagrams and interaction diagrams may be used
for this purpose.

1For information on references, see Chapter 2.
Version 1.0 Verification Intellectual Property Recommended Practices 1

Participants: A listing of the classes and objects used in the practice and their roles in the design.

Collaboration: A description of how classes and objects used in the practice interact with each other.

Implementation: A description of an implementation of the practice; the solution part of the practice.

Sample code: An illustration of how the practice can be used in a programming language.

1.4 Conventional notations

The meta-syntax for the description of the examples, keywords, variables, etc. uses the conventions shown
in Table 1.

1.5 Contents of this document

The organization of the remainder of this document is as follows:

— Chapter 2 provides references to applicable standards that are presumed or required for using these
recommended practices.

— Chapter 3 defines terms and acronyms used throughout this document.

— Chapter 4 defines the process for integrating and using mixed methodology VIPs.

— Chapter 5 details each of the VIP recommended practices.

— Chapter 6 defines the application programming interface (API) for each of the VIP classes.

Table 1—Document conventions

Visual cue Represents

courier The courier font indicates OVM, VMM, or SystemVerilog terms or examples. For
example:

subenv = new("vmm_env",this);

bold The bold font is used to indicate objects, components, and key terms—text that shall be
typed exactly as it appears. For example, in the following line, “avt_ovm_vmm_env” is a
component:

The avt_ovm_vmm_env creates ...

italic The italic font indicates when definitions or variables occur. For example, a “method”
needs to be specified in the following line (after the “super.” key term):

Using a customized wrapper also requires the user to call super.method().
2 Verification Intellectual Property Recommended Practices Version 1.0

2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies.

IEEE Std 1800™, IEEE Standard for SystemVerilog Unified Hardware Design, Specification and Verifica-
tion Language.2, 3

3. Definitions, acronyms, and abbreviations

For the purposes of this document, the following terms and definitions apply. The IEEE Standards
Dictionary: Glossary of Terms & Definitions4 should be referenced for terms not defined in this clause.

3.1 Definitions

3.1.1 adapter: A component that connects one transaction-level interface to another, including converting
the transaction object format, if necessary. In the context of this document, this usually refers to the
connection and conversion of transactions from one methodology to the other. Also referred to as a bridge.

3.1.2 channel: A transaction-level communication conduit. Usually refers to a vmm_channel instance.

3.1.3 component: A piece of VIP that provides functionality and interfaces. Also referred to as a transactor.

3.1.4 consumer: A verification component that receives transactions from another component.

3.1.5 driver: A component responsible for executing or otherwise processing transactions, usually
interacting with the device under test (DUT) to do so.

3.1.6 export: A transaction level modeling (TLM) interface that provides the implementation of methods
used for communication. Used in OVM to connect to a port.

3.1.7 foreign methodology: A verification methodology that is different from the methodology being used
for the majority of the verification environment.

3.1.8 generator: A verification component that provides transactions to another component. Also referred
to as a producer.

3.1.9 port: A TLM interface that defines the set of methods used for communication. Used in OVM to
connect to an export.

3.1.10 primary (host) methodology: The methodology that manages the top-level operation of the
verification environment and with which the user/integrator is presumably more familiar.

3.1.11 request: A transaction that provides information to initiate the processing of a particular operation.

2IEEE publications are available from the Institute of Electrical and Electronics Engineers, Inc., 445 Hoes Lane, Piscataway, NJ 08854,
USA (http://standards.ieee.org/).
3The IEEE standards or products referred to in this clause are trademarks of the Institute of Electrical and Electronics Engineers, Inc.
4The IEEE Standards Dictionary: Glossary of Terms & Definitions is available at http://shop.ieee.org/.
Version 1.0 Verification Intellectual Property Recommended Practices 3

3.1.12 response: A transaction that provides information about the completion or status of a particular
operation.

3.1.13 scenario: A VMM object that procedurally defines a set of transactions to be executed and/or
controls the execution of other scenarios.

3.1.14 scoreboard: The mechanism used to dynamically predict the response of the design and check the
observed response against the predicted response. Usually refers to the entire dynamic response-checking
structure.

3.1.15 sequence: An OVM object that procedurally defines a set of transactions to be executed and/or
controls the execution of other sequences.

3.1.16 test: Specific customization of an environment to exercise required functionality of the DUT.

3.1.17 testbench: The structural definition of a set of verification components used to verify a DUT. Also
referred to as a verification environment.

3.1.18 transaction: A class instance that encapsulates information used to communicate between two or
more components.

3.1.19 transactor: See component.

3.2 Acronyms and abbreviations

AVT Accellera VIP Technical subcommittee

API application programming interface

EDA electronic design automation

FIFO first-in, first-out

HDL hardware description language

IP intellectual property

OSCI Open SystemC Initiative

OVC OVM verification component

OVM Open Verification Methodology

DUT device under test

TLM transaction level modeling

VIP verification intellectual property

VMM Verification Methodology Manual
4 Verification Intellectual Property Recommended Practices Version 1.0

4. Integrating verification components

4.1 Motivation

When a design project is started, the verification architect ideally leverages existing VIP as much as possible
before deciding to create new components. Building reusable VIP is time-consuming and often the new
component is neither reliable nor mature enough to ensure correctness. While both OVM and VMM are self-
consistent and provide guidelines and technology to ensure reusability, trying to use an OVM VIP in a
VMM testbench (or vice-versa) exposes some of the different philosophies they hold. Challenges the user
may experience when attempting to reuse a VIP written in a different methodology include:

— Instantiating and building of the component within the testbench

— Coordinating different simulation phases

— Configuring components to operate properly in the desired context

— Orchestrating and coordinating stimulus and other traffic between components

— Passing data types between components

— Distributing notifications across the testbench

— Issuing and controlling messages

This document provides a recommended set of best practices to address each of these challenges. This
chapter introduces the process of integrating existing reusable environments into a testbench with relevant
references to the more elaborate use-cases.

4.2 Interoperability vs. migration

When a verification architect examines the trade-offs in reusing an existing VIP block in a new environment
that is based on a different methodology library, a decision needs to be made whether to make the block
interoperate with the new environment or to migrate the VIP block by rewriting it using the primary
methodology. While creating a VIP from scratch can be time consuming, large blocks of code can often be
easily mapped from one methodology to the other. For example, in many cases the driving logic could be
mapped from one methodology to the other.

a) Advantages of interoperating using existing components:

1) User does not need to know the protocol or the internal implementation.

2) The initial effort is small.

3) This might be the only option, as sometimes users do not have access to the VIP code
(encrypted or commercial code).

4) If a different team maintains the VIP code, rewriting requires maintaining two different ver-
sions of the component.

b) Advantages of rewriting components to use the same methodology:

1) If the company decides to move to a single methodology, long-term rewriting makes it easier to
support components.

2) If engineers will use one methodology in the long term, rewriting ensures an easier learning
curve and more expertise in a single methodology.

3) If many changes are expected in the existing component, it may be easier to rewrite it into a
common methodology.

This document focuses on interoperability (the first option).
Version 1.0 Verification Intellectual Property Recommended Practices 5

4.3 Integrating mixed methodologies

The process of integrating and using mixed methodology VIPs includes the following steps.

a) Learn the OVM and VMM methodologies (see 4.4); then, choose a primary methodology.

b) Determine the level of reuse and infrastructure needed to embed the foreign components in a test-
bench (see 4.5).

1) Embed foreign components directly, along with necessary adapters. OR

2) Group foreign components and adapters in a component written in the primary methodology to
present, consolidate, and simplify the interactions.

c) Instantiate the foreign component(s) into a testbench (see 4.6).

1) Adjust the configuration as needed.

2) Connect components.

d) Create reusable sequences or scenarios (see 4.7):

1) For a single channel (stream);

2) For multi-channel (multi-stream) sequences.

e) Write tests (see 4.8):

1) For configuration control;

2) For layer constraints on top of transaction types;

3) For control and coordination sequences.

f) Run simulations, debug them, and trace any messages (see 4.9).

These steps are further explained in the following sections.

4.4 Learning OVM and VMM

The recommended practices documented herein presume a working knowledge of the OVM and VMM
methodologies ([B3] and [B4]). A verification team usually includes verification architects who create the
testbench infrastructure and test writers who create tests and run simulations on existing testbenches. The
verification architect needs to understand both methodologies and the interoperability practices specified in
this document to wrap VMM IP within OVM or vice-versa. In the context of this document, the architect
who implements such an interoperable environment is referred to as the integrator. Test writers need to
focus on the control and execution of sequences/scenarios and test writing.

4.5 Reusing infrastructure

This step focuses on determining what level of reuse and infrastructure are necessary to begin integrating
and interoperating.

4.5.1 Choosing the level of reuse

Verification components can be reused at various levels.

a) At the component (transactor) level—this means separate reuse of monitors, drivers, etc. This level
of reuse requires the integrator to know the various component names, configuration modes, roles,
and connection requirements. The integrator also needs to integrate the low-level component at
every integration level.

b) At the interface level—as part of the reusable environment, the VIP developer connects the driver,
generator, and monitor of a single protocol, so a cluster of pre-connected components can be used
6 Verification Intellectual Property Recommended Practices Version 1.0

without knowing the internal implementation or hookup; e.g., a pre-connected environment with
stimuli, checking, and coverage for a PCI-E environment.

c) For an arbitrary group of classes—grouping IP components in this way is typically project-specific
and may make horizontal reuse more difficult.

d) In complete testbenches—the entire testbench, including all connections, is leveraged. This kind of
reuse is possible when all interfaces and functionality remain similar (such as the next generation of
the same chip). This is the quickest way to migrate a full testbench between methodologies, but has
limited reuse potential.

The optimal reuse level is one where substantial amounts of VIP can be grouped together in ways that are
not project-specific. This allows the VIP to be leveraged in more projects, saving effort for the integrator.
Even if the foreign VIP was created with transactor-level reuse in mind, it can be bundled it in a larger
component, which often improves its ability to be reused.

Tests may also be reused under some circumstances, although typically sequences or scenarios are the test-
level point of reuse (see 4.7).

4.5.2 Grouping the foreign component(s) and adapters into a container

Since integrating foreign VIP requires one or more adapter components (see Chapter 5), it may be
convenient to group the VIP and adapter(s) into a single container component. This requires the integrator to
create a parent component (a “container”) in the primary methodology that directly instantiates and
optionally configures the foreign VIP. The container is instantiated in the primary environment like any
other component. All datatype conversion and other communication translation is performed locally inside
the container and is otherwise isolated from the primary environment.

a) If VMM transactors need to be placed within an OVM testbench (see Figure 1 and 5.1):

1) Create TLM ports/exports for the container and use adapters to connect them to the appropriate
vmm_channel parameters of the VMM component(s) (see 5.7), and convert between
vmm_data and ovm_transactions or ovm_sequence_items (see 5.5).

2) Translate external notifications to analysis ports (see 5.9).

3) Elevate configuration options to allow using the OVM set_config_* mechanism and the
OVM factory.

4) Call the needed component build() functions from the container build().

The VMM run-time phases are automatically called from the OVM’s run() phase.

Figure 1—Incorporating VMM VIP into OVM

OVM Testbench

container

gen chan2tlm consumer

cov notify2analysis scorebd

VMMOVM adapter
Version 1.0 Verification Intellectual Property Recommended Practices 7

b) If OVM components are integrated within a VMM container (see Figure 2 and 5.2):

1) Create VMM channels and use the adapters to communicate vmm_data instead of
ovm_transactions (see 5.6).

2) Translate analysis ports to VMM notifiers (see 5.9).

3) Elevate configuration options to allow use of constructor arguments or set values directly
from the VMM parent instead of requiring the VMM parent to use the OVM set_config_*
mechanism.

4) Call the ovm_build() function from the container.

The OVM phases are called at the appropriate time from the VMM environment.

Figure 2—Incorporating OVM VIP into VMM

See also 5.3.

4.6 Instantiating the foreign component(s) in a testbench

This step focuses on instantiating, connecting, and configuring components.

4.6.1 Instantiating and connecting components

Once the container has been implemented, it needs to be instantiated in the primary environment. In OVM-
based environments, the container class may be constructed directly or instantiated via the OVM factory to
enable unplanned extensions, after which the TLM ports/exports are connected. In VMM-based
environments, the container class is constructed with communication channels passed in as constructor
arguments.

4.6.2 Configuring testbenches

Configuration is typically propagated top-down. The testbench top decides or randomizes the needed
configuration and proliferates this to the sub-components. VMM and OVM have different ways to
proliferate configuration. VMM uses the constructor's arguments, while OVM uses the
set_config_* interface. See also 5.4.

VMM Testbench

ovm_container

gen tlm2chan consumer

cov analysis2notify scorebd

VMMOVM adapter
8 Verification Intellectual Property Recommended Practices Version 1.0

4.7 Creating reusable sequences/scenarios

Ideally, a reusable component provides a library of component-specific scenarios or sequences a test writer
can use for productive test creation to describe a particular stream of transactions. The user may enhance the
provided sequences/scenarios to adjust them (e.g., for device-specific memory constraints). The user may
also add project-specific (reusable) sequences or scenarios. OVM and VMM each support two kinds of
sequences or scenarios. VMM provides a single channel scenario that controls one channel and a multi-
channel scenario that controls and coordinates between multiple scenarios and/or channels. In OVM, a
sequence may control a single sequencer or it may control and coordinate between multiple other sequences.
Such a coordinating sequence is referred to conceptually as a virtual sequence.

4.7.1 Creating sequences/scenarios for a single stream

To create a reusable transaction stream for a single target, the user should use the stimulus mechanism
related to the target component (e.g., for a VMM generator in a primarily-OVM testbench, create
vmm_scenarios for the VMM generator; for an OVM sequencer in a primarily-VMM testbench, create
ovm_sequences for the sequencer).

4.7.2 Developing system-level multi-channel sequences (multi-stream scenarios)

In some environments, a user may want to coordinate data and timing across multiple channels. Multi-
channel sequences are typically created by the testbench integrator, who knows the number and nature of the
interfaces in the design. This is best done in the primary methodology by calling a VMM sequence within an
OVM virtual sequence or an OVM sequence within a VMM multi-stream scenario. See also 5.11.

4.8 Writing tests

While writing tests, a user may wish to modify the testbench configuration for a certain mode, layer
constraints on top of data-items, determine the sequences that are executed, and much more. For this, the
user should use the primary testbench test mechanism.

4.9 Running simulations, debugging them, and tracing any messages

OVM and VMM each provide a robust infrastructure for issuing messages throughout the simulation and for
controlling the format and verbosity of messages. Defining the OVM_ON_TOP compiler directive allows
VMM messages to be issued through the OVM reporting mechanism, while defining the VMM_ON_TOP
compiler directive allows OVM messages to be issued through the VMM reporting mechanism. In either
case, controlling the verbosity or other message management shall be done in the component’s base
methodology. See also 5.12.
Version 1.0 Verification Intellectual Property Recommended Practices 9

10 Verification Intellectual Property Recommended Practices Version 1.0

5. Recommended practices

This chapter defines the VIP recommended practices; Table 2 shows their intent. All VIP recommended
practices are based on the SystemVerilog syntax of IEEE Std 1800™ and assume an implementation of the
class library and API documented in Chapter 6.

Because of fundamental differences between OVM and VMM, it is necessary for the integrator to specify
which methodology to use as the primary phasing and messaging manager (see 5.12). Typically, an
integrator who chooses to include VMM IP in a primarily-OVM environment would set the OVM_ON_TOP
compiler directive while the integrator including OVM IP in a primarily-VMM environment would set the
VMM_ON_TOP compiler directive. These directives shall be set via a tool-specific command-line argument.

The various practices defined in this chapter arise from the fundamental differences in how components in
each library establish and conduct communication at the transaction level. These differences include, but are
not limited to, the following.

— In OVM, communication occurs primarily through TLM5 ports and exports, whose semantics
are defined by the interface type used. Communication is established between components by con-

Table 2—Practices

Section Practice name Intent

5.1 OVM-on-top phase synchronization Synchronize OVM and VMM phases in a primarily-
OVM environment.

5.2 VMM-on-top phase synchronization Synchronize OVM and VMM phases in a primarily-
VMM environment.

5.3 Meta-composition Compose hierarchical components with subcomponents
from different methodologies.

5.4 VIP configuration Set structural and run-time parameters for reusable VIP.

5.5 Data conversion Convert data items from one methodology to the other.

5.6 TLM to channel Establish semantic compatibility between OVM TLM
ports/exports and VMM channels.

5.7 Channel to TLM Establish semantic compatibility between VMM chan-
nels and OVM TLM ports/exports.

5.8 Analysis to channel / Channel to analysis Establish semantic compatibility between OVM analy-
sis ports/exports and VMM channels.

5.9 Notify to analysis / Analysis to notify Establish semantic compatibility between OVM analy-
sis ports/exports and VMM notify objects.

5.10 Callback adapter Establish semantic compatibility between VMM call-
back methods and OVM analysis ports.

5.11 Sequence and scenario composition Allow OVM sequences to call VMM scenarios and
vice-versa.

5.12 Messaging Allow messages generated by either methodology to be
handled by the desired methodology’s messaging sys-
tem.

5In the context of OVM ports and exports, TLM refers not to the generic term, but to the TLM 1.0 interfaces developed and standard-
ized by the Open SystemC Initiative (OSCI); see [B1].
Version 1.0 Verification Intellectual Property Recommended Practices 11

necting a component’s port to an interface and transaction-type compatible export in the target com-
ponent.

— In VMM, communication is primarily conducted through shared vmm_channels, vmm_data noti-
fications, and callbacks. For vmm_channels, the execution semantic is defined by matching the
completion model expected by the producer with a compatible completion model provided by the
consumer. For notifications and callbacks, the delivery mechanism is unique to VMM.

The role of the various adapters is to provide a bridge between the different OVM and VMM interfaces and
execution semantics. In some cases, such as OVM sequences and VMM scenarios, the collaborations with
other classes and mechanisms in the native library are so varied and application-specific that the
implementation of the corresponding practice can not be aided by an adapter. In these cases, the practice
consists of a description of how one might go about integrating the foreign VIP using the APIs and
mechanisms of the foreign library.

In addition to using different transaction-level communication mechanisms, each methodology uses a
different type to describe the same transaction. OVM transaction descriptors are based on the
ovm_transaction or ovm_sequence_item class, whereas the VMM transaction descriptors are
based on the vmm_data class. Thus, each practice involves translation of transactions in the source domain
to the equivalent transaction in the target domain. Because each transaction type is application-specific, the
integrator needs to write all conversion routines using the Data conversion practice (see 5.5).

5.1 OVM-on-top phase synchronization

5.1.1 Practice name

OVM-on-top phase synchronization

5.1.1.1 Also known as

Phase synchronization.

5.1.1.2 Related practices

VMM-on-top phase synchronization (see 5.2) and Meta-composition (see 5.3).

5.1.2 Intent

Provides a default mapping and coordination between OVM and VMM execution phases.

5.1.3 Applicability

This practice is required to ensure VMM environments, when instantiated in OVM components, are
properly coordinated so the overall environment is configurable and properly built before any component
begins executing, all components shut down completely, and all result-gathering, reporting, and cleanup
occur only after component execution has completed.

To integrate sub environments and components, see 5.3.

5.1.3.1 Motivation

OVM and VMM support the basic concept of “phases,” but each has its own specific set of phase methods.
To minimize the impact on an OVM parent instantiating a VMM child, VMM VIP needs to be wrapped in
an OVM component (to hide the VMM details).
12 Verification Intellectual Property Recommended Practices Version 1.0

5.1.3.2 Consequences

This practice automatically integrates VMM environments into the OVM phase controller mechanism, while
providing an OVM-centric view of the component. All VMM environments are phased properly relative to
each other. As a side effect of this practice, the VMM environment and its subcomponents become
integrated into the OVM named-component hierarchy.

5.1.4 Structure

The overall structure for this practice is based on the following diagrams, prototype, and participants.

5.1.4.1 Class diagram

The class diagram for this practice is shown in Figure 3.

Figure 3—User-defined avt_ovm_vmm_env extension

5.1.4.2 Declaration prototype

This practice uses the following declaration prototypes.

class avt_ovm_vmm_env #(type ENV=vmm_env) extends avt_ovm_vmm_env_base;

class avt_ovm_vmm_env_named #(type ENV=vmm_env) extends avt_ovm_vmm_env_base;

The avt_ovm_vmm_env class (see 6.4) is used to wrap vmm_env subtypes that do not have a name
argument as a part of their constructor, while the avt_ovm_vmm_env_named class is used to wrap any
vmm_env’s with names.

In both cases, the ENV parameter specifies the type of the underlying vmm_env. If an instance of an
environment of this type is not provided in the constructor, the avt_ovm_vmm_env creates one.

5.1.4.3 Interaction diagrams

The interaction diagrams for this practice are shown in Figure 4.

avt_ovm_vmm_env

my_ovm_vmm_env
Version 1.0 Verification Intellectual Property Recommended Practices 13

Figure 4—OVM-on-top phasing management

5.1.4.4 Participants

The integrator wraps the vmm_env (extension) by instantiating the appropriate wrapper component and
specifying the vmm_env subtype as a parameter. The wrapper automatically creates an instance of the
specified vmm_env subtype as a child of the wrapper. Which wrapper to use depends on whether an explicit

OVM VMM

vmm_gen_cfg

gen_cfg

build

connect

end_of_elaboration

start_of_simulation

reset_dut

cfg_dut

start

wait_for_end

run

stop_request

stop

stop

cleanupextract

check

report

vmm_report

report

call

return

fork

build
14 Verification Intellectual Property Recommended Practices Version 1.0

name is supplied to the vmm_env's constructor. If a name constructor argument is required,
avt_ovm_vmm_env_named is used (see 6.4); otherwise, avt_ovm_vmm_env is used.

5.1.5 Collaboration

To accommodate the calling of the vmm_env phase methods in the proper order, the avt_ovm_vmm_env
class (see 6.4) declares two new phases that are added to the OVM phase list. The vmm_gen_cfg phase (see
6.4.3.2) is inserted before build and it calls the vmm_env’s gen_cfg() method, which shall be called
before the vmm_env’s build() method. From that point on, the avt_ovm_vmm_env is treated as any
other OVM component, with its phase methods being called automatically in the proper order. Similarly, the
vmm_report phase is inserted at the end of the OVM phase list to allow the VMM report task to be called.

The implementation of the avt_ovm_vmm_env’s run() method, which gets called in parallel with all
other OVM components’ run() methods, calls the underlying vmm_env’s reset_dut(),
cfg_dut(), start(), and wait_for_end() methods sequentially. When wait_for_end()
returns, the run() method sets the ok_to_stop bit (see 6.4.4.1), which the ovm_env parent component (or
any other OVM component, such as ovm_env or ovm_test) may use to determine that the vmm_env has
completed its operation. The OVM parent may then call stop_request() to ensure all other OVM
components have completed their run() methods.

Invocation of stop_request() causes the avt_ovm_vmm_env’s stop() method to be called, which
calls the underlying vmm_env’s stop() and cleanup() methods sequentially, in parallel with other
OVM components executing their stop() methods (assuming they are enabled). Thus, when all OVM
components, including the avt_ovm_vmm_env, return from their stop() methods, the OVM run()
phase ends and the extract(), check(), and report() phases occur.

The vmm_report() phase gets executed after OVM’s report() phase and causes the
avt_ovm_vmm_env to call the env.report() method of the underlying vmm_env.

5.1.6 Implementation

To implement the practice, the integrator simply instantiates an avt_ovm_vmm_env or
avt_ovm_vmm_env_named, as appropriate (see 6.4) in the ovm_env (or another parent
ovm_component) and specifies the vmm_env type as a parameter. This effectively creates a wrapper
around the vmm_env. The wrapper’s parent then builds and optionally configures the wrapper as it would
any other component. In the connect() method, the parent may optionally register one or more callback
objects with transactors in the vmm_env. It may also choose to connect other OVM components (via the
appropriate adapter) to specific vmm_channels in the vmm_env. When using the avt_ovm_vmm_env
directly, the parent class necessarily includes VMM-specific code to enhance or otherwise modify the
behavior of the underlying vmm_env.

If VMM sub environments and components (i.e., vmm_xactor) are integrated directly into an OVM
parent, their methods are called directly from within the appropriate OVM phase method of the parent
component.

The wrapper automatically calls the appropriate phase methods of vmm_env at the appropriate point
relative to the others to ensure proper operation. Ideally, this alignment should be transparent to the user.

The integrator may also choose to extend the avt_ovm_vmm_env to encapsulate the VMM-specific
extensions inside the wrapper—making the wrapper appear simply as an OVM component to its parent.
Typically, the wrapper includes ports/exports and/or configuration “hooks” or other mechanisms to hide
these details from the OVM parent. Using a customized wrapper also requires the integrator to call
super.method() in wrapper.method() to ensure the underlying vmm_env.method() gets
Version 1.0 Verification Intellectual Property Recommended Practices 15

called at the proper time. This also allows the integrator to perform additional operations before and after the
execution of the vmm_env’s methods.

If the integrator wishes to include additional components, such as communication adapters, alongside the
vmm_env in the avt_ovm_vmm_env wrapper, the avt_ovm_vmm_env needs to be extended to instantiate
the other components in build(), which is virtual. The new implementation of build() shall call
super.build() to allow the underlying vmm_env’s build() method to get called. Once
super.build() returns, the underlying vmm_env is completely built.

5.1.7 Sample code

This illustrates how to implement this practice.

class vmm_env_ext extends ‘VMM_ENV;

...

endclass

class ovm_comp_ext extends ovm_component;

...

endclass

class wrapped_vmm_env extends avt_ovm_vmm_env #(vmm_env_ext);

`ovm_component_utils(wrapped_vmm_env)

function new (string name, ovm_component parent=null);

super.new(name,parent);

endfunction

endclass

class my_ovm_env extends ovm_comp_ext;

`ovm_component_utils(my_ovm_env)

wrapped_vmm_env subenv;

function new (string name, ovm_component parent=null);

super.new(name,parent);

endfunction

virtual function void build();

subenv = new("vmm_env",this);

endfunction

endclass

module top;

initial run_test("my_ovm_env");

endmodule

Notice when my_ovm_env constructs the avt_ovm_vmm_env in its build() method, the OVM phasing
mechanism automatically executes its phases up to (but not yet including) build. Thus, the underlying
vmm_env’s gen_cfg method is called automatically at this time.
16 Verification Intellectual Property Recommended Practices Version 1.0

5.2 VMM-on-top phase synchronization

5.2.1 Practice name

VMM-on-top phase synchronization

5.2.1.1 Also known as

Phase synchronization.

5.2.1.2 Related practices

OVM-on-top phase synchronization (see 5.1) and Meta-composition (see 5.3).

5.2.2 Intent

Provides a default mapping and coordination between VMM and OVM execution phases.

5.2.3 Applicability

This practice is required to ensure OVM components (including ovm_component, ovm_env,
ovm_test, and their extensions), when instantiated in VMM environments and/or components, have their
phase methods called at the correct time relative to the execution of the top-level VMM environment phase
methods.

5.2.3.1 Motivation

OVM and VMM support the basic concept of “phases,” but each has its own specific set of phase methods.
To present a single base class library view to the user, OVM VIP is ultimately instantiated in an extension of
the vmm_env base class. The extension provides a set of virtual methods that enable the user to execute
OVM phases in the proper order.

5.2.3.2 Consequences

This practice automatically integrates OVM components into a VMM environment. Just as the vmm_env is
responsible for calling the appropriate methods of VMM sub environments and transactors in build(),
start(), etc., so it shall also call specific methods to ensure the OVM components are built appropriately.
Since the vmm_env::reset_dut() task is the first VMM phase that may interact with the DUT,
execution of the OVM run() phase happens automatically in parallel with the execution of the VMM
reset_dut() task.

5.2.4 Structure

The overall structure for this practice is based on the following diagrams, prototype, and participants.

5.2.4.1 Class diagram

The class diagram for this practice is shown in Figure 5.
Version 1.0 Verification Intellectual Property Recommended Practices 17

Figure 5—User-defined avt_vmm_ovm_env extension

5.2.4.2 Declaration prototype

This practice uses the following declaration prototype.

class avt_vmm_ovm_env extends `AVT_VMM_OVM_ENV_BASE;

avt_vmm_ovm_env

my_vmm_ovm_env
18 Verification Intellectual Property Recommended Practices Version 1.0

5.2.4.3 Interaction diagrams

The interaction diagrams for this practice are shown in Figure 6.

Figure 6—VMM-on-top phasing management

OVMVMM

gen_cfg

build

connect

end_of_elaboration

start_of_simulation

reset_dut

cfg_dut

start

wait_for_end

run

stop_request

stop

stop

cleanup

extract

check

report

<user>

report

build
ovm_build()

ovm_report()
Version 1.0 Verification Intellectual Property Recommended Practices 19

5.2.4.4 Participants

The integrator incorporates OVM IP into a VMM environment by instantiating the IP in the
avt_vmm_ovm_env::build() method, or in a vmm_subenv or vmm_xactor, by instantiating the
IP in the constructor. The instantiation may be done either directly by calling new() or by creating the
OVM component via the OVM factory. Since the OVM separates the “build” operation across multiple
phases, it is necessary for the VMM build() method to call ovm_build() (after the OVM IP is
instantiated) to cause the OVM phase manager to execute the OVM build(), connect(), and
end_of_elaboration() phases to completely build the OVM IP.

In either case, the VMM parent shall include the ‘ovm_build macro, which declares an instance-specific
version of the ovm_build() method to ensure the OVM phases do not get called more than once.

To facilitate communication between VMM IP and OVM IP, existing interconnected OVM IP components
shall be wrapped in a single OVM wrapper component that includes as constructor arguments any
vmm_channels necessary to connect to VMM transactors. Inside the wrapper, these channels are
connected to the necessary communication adapters (see 5.6 and 5.7) that are then connected via OVM TLM
guidelines to the underlying OVM IP. Thus, the wrapper contains additional constructor arguments beyond
standard OVM components. This means the OVM wrapper may be created without using a factory, but the
wrapper may itself use the factory to create its children.

5.2.5 Collaboration

The vmm_env’s phase methods are called from the VMM test either directly or via the env.run()
method, which automatically calls the environment’s phase methods.

— The ovm_build() method runs the OVM children through the end_of_elaboration phase,
so ovm_build() shall be called before the top-level avt_vmm_ovm_env exits its build()
method.

— Although the OVM IP may not be completely built, all communication with VMM IP is handled via
channels, which shall be constructor arguments to the OVM wrapper.

— Since the reset_dut() method of the top-level VMM environment is the first method that entails
communication with the DUT, the avt_vmm_ovm_env::reset_dut() method automatically
spawns execution of the OVM run() method, allowing OVM components, which may be required
to interact with the DUT, to be started.

— The avt_vmm_ovm_env::stop() method can call ovm_top.global_stop_request()
to stop all OVM components’ run() phase execution.

— In the avt_vmm_ovm_env::report() method, the OVM phase manager runs to completion,
which executes the extract(), check(), and report() methods, along with any other user-
defined phases that may have been added after the run phase. When a user-defined extension of
avt_vmm_ovm_env calls super.report(), the OVM phases run to completion. When
super.report() returns, all of the OVM phases are finished.

5.2.6 Implementation

To implement the practice, the integrator simply extends avt_vmm_ovm_env (see 6.5) to create the
application-specific environment, according to VMM guidelines. In the build() method, the OVM IP
wrapper is instantiated, with the necessary vmm_channels connected in the constructor according to
VMM guidelines and ovm_build() is called. Inside the wrapper, the vmm_channels are connected to
the necessary communication adapters, which are then connected to other OVM components in the
wrapper’s connect() method. The OVM IP may be configured via a configuration object constructor
argument (as with other VMM IP) or via the OVM set/get_config* methods. In the former case, the
20 Verification Intellectual Property Recommended Practices Version 1.0

wrapper may extract information from the constructor argument and use set_config* to configure its
OVM children.

5.2.7 Sample code

This illustrates how to implement this practice.

class vmm_env_with_ovm extends avt_vmm_ovm_env;
...
function new (string name);

super.new(name);
endfunction

`ovm_build

ovm_comp_ext ovm_child,ovm_child2; // Instantiate OVM children

virtual function void build();
super.build();
ovm_child = ovm_comp_ext::type_id::create({log.get_name(),

".ovm_child"}, null);
ovm_child2 = new({log.get_name(),".ovm_child2"});
ovm_build();

endfunction

endclass

module example_03_vmm_on_top;

vmm_env_with_ovm e = new("vmm_top");

initial begin
e.gen_cfg();
// Manually modify the config object
e.run();

end
endmodule

The user can call individual phase methods of the vmm_env if desired, and/or may call the run() method
to execute the remaining phases automatically.

5.3 Meta-composition

5.3.1 Practice name

Meta-composition

5.3.1.1 Also known as

Hierarchical wrapping.

5.3.1.2 Related practices

Used by OVM-on-top phase synchronization (see 5.1) and VMM-on-top phase synchronization (see 5.2).
Also related to the VIP configuration practice (5.4).
Version 1.0 Verification Intellectual Property Recommended Practices 21

5.3.2 Intent

This practice shows how to incorporate non-leaf-cell components from different methodologies into a single
assembly.

5.3.2.1 Motivation

VIP seldom comes as a single monolithic component, but it often incorporates hierarchy. Therefore,
successful interoperability requires that hierarchical components can be composed of other components
which are themselves hierarchical. Any hierarchical component may include subcomponents that are
implemented in either methodology or a combination thereof.

5.3.2.2 Consequences

None.

5.3.3 Applicability

This practice is used whenever two hierarchical components from different base classes or a mix of base
classes need to be connected, with the following exceptions.

— When integrating vmm_envs into OVM components (including ovm_env), use the OVM-on-top
phase synchronization practice (see 5.1).

— When integrating OVM components directly into a vmm_env, use the VMM-on-top phase synchro-
nization practice (see 5.2).

5.3.4 Structure

The overall structure for this practice is based on the following diagrams and participants.

5.3.4.1 Declaration prototype

This practice does not require an explicit new class object to be declared.

5.3.4.2 Interaction diagrams

The interaction diagrams for this practice are shown in Figure 7 and Figure 8.

Figure 7—Hierarchical compositions in an OVM top-level environment

ovm_env

ovm_ip vmm_ip
ovm

ovm

vmm vmm

ovm
22 Verification Intellectual Property Recommended Practices Version 1.0

Figure 8—Hierarchical compositions in a VMM top-level environment

In Figure 7 and Figure 8, the vmm_ip represents a vmm_subenv or a vmm_xactor. The techniques used
to encapsulate a mix of OVM and VMM subcomponents is independent of the enclosing VMM type, with
the exception of standard VMM differences in how the container classes are themselves instantiated and
configured. Since all containers in OVM are extensions of ovm_component, the specific type of
component being used may be one of ovm_component, ovm_env, ovm_test, or a user-defined
extension of these, or any of the other ovm_component extensions in OVM.

5.3.4.3 Participants

This practice includes the use of any OVM and VMM components used to model each composition, along
with the top-level container.

5.3.5 Collaboration

The individual hierarchical assemblies may be connected arbitrarily within themselves according to the
guidelines of the appropriate methodology. They may also be connected to each other, including
hierarchically, using any of the adapters described in 5.6 and 5.7.

5.3.6 Implementation

OVM users can create an ovm_component extension, including ovm_env, to hold the assembly, while
VMM users can create a vmm_xactor or vmm_subenv extension.

a) In an OVM container (ovm_ip in Figure 7 and Figure 8), the OVM and VMM subassemblies are
instantiated as any other OVM component would be, in the container’s build() method, and the
connections between them are defined in the connect() method. The OVM container shall call
the vmm_subenv or vmm_xactor methods directly during the appropriate OVM phase, as shown
in Table 3.

b) In a VMM container (vmm_ip in the Figure 7 and Figure 8), the OVM and VMM subassemblies are
instantiated and connected in the container’s constructor, as any other VMM components would be.

In the VMM-on-top case, the top-level vmm_env calls the appropriate OVM methods via the
ovm_build() call in vmm_env::build() [see 5.2.6]. Since VMM only allows a single vmm_env
instance, an OVM container may only include instances of vmm_subenv or vmm_xactor, not vmm_env.

5.3.7 Sample code

The following code example demonstrates the composition of the hierarchical assembly shown in Figure 9.

vmm_env

ovm_ip vmm_ip
ovm

ovm

vmm vmm

ovm
Version 1.0 Verification Intellectual Property Recommended Practices 23

Figure 9—Hierarchical assembly mixing OVM and VMM

In the following example code, the ovm_ip block is extended from the block-level environment, which
includes a mix of VMM and OVM components and an adapter (see 5.7). The ovm_ip extension adds an
analysis_port that exposes the driver’s analysis_port for connection to the analysis_chan
adapter (see 5.8). The example shows that both OVM and VMM sub-components may be instantiated in a
VMM environment, a VMM sub-environment, and an OVM component.

Table 3—OVM phases calling VMM methods

VMM OVM

Component Method Phase method

vmm_subenv configure() build() or
end_of_elaboration()

start() run()

stop() run() or stop()1

cleanup() stop()

vmm_xactor start_xactor() run()

stop_xactor()2 run() or stop()3

1If the OVM enable_stop_interrupt bit is set, vmm_subenv::stop() shall be called from the
OVM parent’s stop() method. Otherwise, stop() should be called from the parent’s run() method.

2Calling stop_xactor() is optional and environment-dependent.
3If the OVM enable_stop_interrupt bit is set, vmm_xactor::stop_xactor() shall be called

from the OVM parent’s stop() method. Otherwise, stop_xactor() should be called from the par-
ent’s run() method.

ovm_env

ovm_subcomp (ovm_vmm_env)

tb_env (vmm_env)

vmm_ip (vmm_subenv)

ovm_private_wrapper

vmm_consumer
ovm_ip (block_env)

analysis_chan

gen

chan2tlm

drv

ovm_ip
24 Verification Intellectual Property Recommended Practices Version 1.0

class block_env extends ovm_component;
`ovm_component_utils(block_env)

apb_rw_atomic_gen gen;
apb_channel2tlm adapt;
ovm_driver_req drv;

function new (string name="block_env",ovm_component parent=null);
super.new(name,parent);

endfunction

virtual function void build();
gen = new("gen", 0);
adapt = new("adapt", this, gen.out_chan);
drv = new("drv", this);
void'(get_config_int("max_trans",drv.max_trans));

endfunction

virtual function void connect();
drv.seq_item_port.connect(adapt.seq_item_export);

endfunction

virtual task run();
gen.start_xactor();
gen.notify.wait_for(apb_rw_atomic_gen::DONE);
ovm_top.stop_request();

endtask
endclass

class ovm_ip extends block_env;

`ovm_component_utils(ovm_ip)

ovm_analysis_port #(ovm_apb_rw) ap;

function new(string name, ovm_component parent=null);
super.new(name,parent);

endfunction

function void build();
super.build();
ap = new ("ap",this);

endfunction

function void connect();
super.connect();
drv.ap.connect(ap);

endfunction

virtual task run();
gen.start_xactor();

endtask
endclass

class ovm_private_wrapper extends ovm_component;
`ovm_component_utils(ovm_private_wrapper)
ovm_ip o_ip;
apb_analysis_channel v_ap_adapter;
vmm_channel_typed #(vmm_apb_rw) out_chan;
Version 1.0 Verification Intellectual Property Recommended Practices 25

function new(string name, ovm_component parent=null,
vmm_channel_typed #(vmm_apb_rw) out_chan=null);

super.new(name,parent);
this.out_chan = out_chan;

endfunction
virtual function void build();

o_ip = new("o_ip",this);
v_ap_adapter = new("v_ap_adapter", this, out_chan);
if (out_chan == null)

out_chan = v_ap_adapter.chan;
endfunction
virtual function void connect();

o_ip.ap.connect(v_ap_adapter.analysis_export);
endfunction

endclass

class vmm_ip_cfg;
 int max_trans=0;
endclass

class vmm_ip extends vmm_subenv;

ovm_private_wrapper o_wrapper;
vmm_consumer #(vmm_apb_rw) v_consumer;
vmm_consensus end_vote;

function new(string inst, vmm_ip_cfg cfg, vmm_consensus end_vote);
super.new("vmm_ip", inst, end_vote);
this.end_vote = end_vote;
v_consumer = new({inst,".v_consumer"},0);
o_wrapper = new({inst,".o_wrapper"},,v_consumer.in_chan);
v_consumer.stop_after_n_insts = cfg.max_trans;
set_config_int({inst,".o_wrapper.o_ip"},"max_trans",cfg.max_trans);

end_vote.register_notification(v_consumer.notify,v_consumer.DONE);
endfunction

task configure();
super.configured();

endtask

virtual task start();
super.start();
v_consumer.start_xactor();

endtask

virtual task stop();
super.stop();

endtask

virtual task cleanup();
super.cleanup();

endtask
endclass

class tb_env extends vmm_env;
vmm_ip_cfg cfg;
vmm_ip v_ip;
ovm_ip o_ip;
26 Verification Intellectual Property Recommended Practices Version 1.0

function new();
super.new("mixed_tb_env");

endfunction

virtual function void gen_cfg();
super.gen_cfg();
cfg = new;
// Could be randomized, but isn’t
cfg.max_trans = 10;

endfunction

virtual function void build();
super.build();
v_ip = new({log.get_name(),".v_ip"},cfg,end_vote);
o_ip = new({log.get_name(),".env_o_ip"});

endfunction

virtual task cfg_dut();
super.cfg_dut();
v_ip.configure();

endtask

virtual task start();
super.start();
v_ip.start();

endtask

task wait_for_end();
super.wait_for_end();
end_vote.wait_for_consensus();
global_stop_request();

endtask
endclass

class ovm_subcomp extends avt_ovm_vmm_env #(tb_env);
`ovm_component_utils(ovm_subcomp)

function new (string name="ovm_subcomp", ovm_component parent=null);
super.new(name,parent);

endfunction
virtual function void vmm_gen_cfg();

ovm_object obj;
super.vmm_gen_cfg();
if (get_config_object("cfg",obj,0)) begin

ovm_container #(vmm_ip_cfg) v_cfg;
assert($cast(v_cfg,obj));
env.cfg = v_cfg.obj;
end

endfunction
endclass

class ovm_env extends ovm_component;
`ovm_component_utils(ovm_env)

ovm_subcomp subcomp;

function new (string name="ovm_env", ovm_component parent=null);
super.new(name,parent);

endfunction
Version 1.0 Verification Intellectual Property Recommended Practices 27

virtual function void build();
super.build();
subcomp = new("subcomp",this);

endfunction
endclass

The example includes an OVM component (ovm_subcomp) instantiating a vmm_env (tb_env), as well
as an OVM component (ovm_ip) instantiating a VMM component. The same template may be used for
instantiating a vmm_subenv. It also shows a vmm_subenv (vmm_ip) instantiating an OVM component
(ovm_private_wrapper). For an example of a vmm_env instantiating OVM components directly, see
5.2.

Notice the vmm_ip container instantiates the ovm_private_wrapper and the vmm_consumer in its
build() method, passing the vmm_consumer’s input channel to the ovm_private_wrapper’s
constructor, as if it were a standard VMM transactor. The build() method can also configure the
vmm_consumer by setting its stop_after_n_insts parameter after the vmm_consumer has been
constructed. See 5.4 for a more in-depth discussion of configuration.

To preserve the proper hierarchical naming of components, an OVM parent should set the instance name of
its VMM children to be {get_full_name(),”.”,child_name}. This appends the child_name to
the existing OVM hierarchical name of the OVM parent, thus giving the VMM child a consistent
hierarchical name. Similarly, VMM parents that are derived from vmm_subenv or vmm_xactor, which
themselves have a unique instance name, should set the instance name of OVM children to {inst, “.”,
child_name}. VMM parents that are derived from avt_vmm_ovm_env (see 6.5) should set the instance
name of OVM children to {log.get_name(), “.”, child_name}. As long as the children then
follow the appropriate guidelines for naming their children, both OVM and VMM components have the
proper hierarchical names.

The ovm_private_wrapper includes a vmm_channel as a constructor argument. Notice this restricts
the component from being created via the factory, but this particular component does not need to be
overridden. Other than that, ovm_private_wrapper is a standard ovm_component. It instantiates the
OVM subcomponents in its build() method. Since the v_ap_adapter allocates its channel in its own
constructor, the out_chan can similarly be assigned in build() after the adapter has been constructed.
The integrated phasing mechanism then runs the connect() method of the wrapper, which makes the
standard OVM port/export connections as necessary.

5.3.8 Printing the environment topology

For debugging purposes, the container print methods should be enhanced to also call the contained
foreign component print method. For example an OVM component do_print() can be extended to
call the psdisplay of a VMM transactor. This fits nicely with both the OVM and the VMM field
automation macros.

a) OVM

function void do_print(ovm_printer printer);
...
printer.print_generic("xactor", "simple_vmm_xactor", -1,

xactor.psdisplay());
 endfunction

b) VMM

function string psdisplay(string prefix=””);
...
psdisplay = {psdisplay, “\n”, prefix, ovm_comp1.sprint()};
...

endfunction
28 Verification Intellectual Property Recommended Practices Version 1.0

//or using short-hand macros:

‘vmm_data_member_begin(...);
...
‘vmm_data_member_user_defined(ovm_comp1, DO_ALL);
...

‘vmm_data_member_end(...);
...
function bit do_ovm_comp1(...);

do_ovm_comp1 = 1;
case (do_what)
...
DO_PRINT: begin

image = {image . “\n”, prefix, ovm_comp1.sprint()};
end
...
endcase

endfunction

5.4 VIP configuration

5.4.1 Practice name

Procedural VIP configuration or Randomized configuration

5.4.1.1 Also known as

N/A.

5.4.1.2 Related practices

Used with OVM-on-top phase synchronization (see 5.1), VMM-on-top phase synchronization (see 5.2), and
Meta-composition (see 5.3).

5.4.2 Intent

A substantial part of the value of a reusable component is its ability to be reused in multiple contexts, based
on information passed to it from the test and/or the container.

5.4.2.1 Motivation

Both OVM and VMM provide procedural mechanisms for passing such configuration information into
subcomponents and these mechanisms need to be preserved in an interoperability environment.

5.4.2.2 Consequences

None.

5.4.3 Applicability

This practice is used to configure OVM components from a VMM container and vice-versa.
Version 1.0 Verification Intellectual Property Recommended Practices 29

5.4.4 Structure

This practice uses methods that already exist in each base library. There are no new components or adapters
required to implement this practice.

5.4.5 Collaboration

This practice uses OVM (global) set_config_[int,string,object]() methods for setting
configuration information for OVM children instantiated by VMM. Once set, the config information is
retrieved by the OVM child using the standard OVM get_config_*() methods. VMM components are
configured via constructor arguments, so the OVM parent passes the configuration information when calling
new().

5.4.6 Implementation

An OVM container creates a configuration object of the appropriate type to pass to a particular VMM child
in its constructor. Once created, the configuration object may be randomized using standard SystemVerilog
randomization, including constraints, prior to being passed to the VMM child.

A VMM container calls set_config_*() before build() is called on its OVM children. If the VMM
container is a vmm_env, this would occur in build(). If the VMM container is a vmm_xactor or
vmm_subenv, it would be done in the constructor. The OVM child subsequently uses get_config_*()
to retrieve the configuration information. In OVM, the configurable parameters may be declared using the
‘ovm_field* macros, in which case the get_config gets called automatically.

In either case, the child may randomize the desired configuration parameter if it is not set by the container.
In VMM, this would mean the constructor argument is NULL. In OVM, it would mean the
get_config_*() call returns 0.

To support reconfiguration at run-time, it is up to the container component to apply the previously
mentioned configuration methods at the appropriate time.

5.4.7 Sample code

This illustrates how to implement this practice.

a) OVM parent

class my_config extends ovm_object;
rand int num_slaves = 2;
rand other_obj obj;
constraint c1 {num_slaves > 0; num_slaves < 10;}

endclass

class my_ovm_parent extends ovm_component;
vmm_ip v_ip;
my_config cfg;
void function build();

if(!cfg.randomize())
ovm_error(get_full_name(), “Randomization failed”);

v_ip = new(...,cfg,...);
v_ip.stop_after_n_insts = 5;
...

endfunction
endclass;
30 Verification Intellectual Property Recommended Practices Version 1.0

b) VMM parent

class my_config;
rand int num_slaves = 2;
rand other_obj obj;
constraint c1 {num_slaves > 0; num_slaves < 10;}

endclass

class my_vmm_parent extends vmm_xactor;
ovm_ip o_ip;
my_config cfg;
void function new();

if(!cfg.randomize())
‘vmm_error(log, “Randomization failed”);

set_config_object(“o_ip”, “cfgobj”, cfg);
set_config_int(“o_ip”, “stop_after_n_insts”, 5);
o_ip = ovm_ip::type_id::create(“o_ip”, this);
...

endfunction
endclass

5.5 Data conversion

5.5.1 Practice name

Data conversion

5.5.1.1 Also known as

N/A.

5.5.1.2 Related practices

TLM to channel (5.6) and Channel to TLM (5.7).

5.5.2 Intent

Allows a transaction to be converted from VMM to OVM and vice-versa.

5.5.2.1 Motivation

VIPs implemented independently are likely to use different SystemVerilog types to represent the same
transaction. When implemented in different methodologies, they further use distinct base types to model
transaction descriptors. A transaction descriptor originating in one library shall thus be converted to the
equivalent transaction descriptor in the destination library for to protocol-compatible VIPs to communicate
with each other.

5.5.2.2 Consequences

It is necessary for the integrator to implement the type conversion through an explicit mapping between data
fields contained by the two respective data objects. This does not allow declarative members, such as
constraints or user-defined methods, to be converted: functionally-equivalent declarations need to already
exists in the destination type.
Version 1.0 Verification Intellectual Property Recommended Practices 31

The conversion process creates a separate transaction descriptor instance with identical content. Any
subsequent changes to either transaction descriptor are not reflected in the other.

5.5.3 Applicability

This practice shall be used whenever a transaction descriptor is exchanged between two components, each
implemented in different methodologies.

In some cases, the methods and properties of a transaction type may not have an equivalent translation in the
other library. If those methods and properties are critical for the correct operation of the underlying VIP,
interoperability between OVM and VMM components may not be feasible without modifying at least one of
the transaction types to implement the necessary functionality.

5.5.4 Structure

The overall structure for this practice is based on the following diagrams, prototype, and participants.

5.5.4.1 Declaration prototype

The integrator declares OVM-to-VMM and VMM-to-OVM converter types (see 6.2) and passes these in as
parameters to the appropriate adapter.

class avt_converter #(type IN=int, OUT=int);
 static function OUT convert(IN from, OUT to=null);
endclass

5.5.4.2 Interaction diagrams

See 5.6.4.3.

5.5.4.3 Participants

This practice defines the converter objects that get passed as parameters to the various adapter component(s)
to convert input transaction descriptors from one methodology into output descriptors in another
methodology.

It requires the existence of transaction descriptors in each library that can represent the same transaction.

5.5.5 Collaboration

None.

5.5.6 Implementation

To implement the practice, the integrator defines a converter class for each possible conversion operation.
This class does not need to be an extension of any particular type, but shall follow the prototype exactly. The
implementation of the static convert() method does the actual conversion.

The details of the conversion process are descriptor-specific. It may be implemented by explicitly assigning
the relevant data members or by packing one descriptor into a byte stream and then unpacking the byte
stream into the other descriptor. It may also be necessary to map the rand_mode state of data members and
the constraint_mode state of constraint blocks from the original transaction descriptor to the equivalent
data member or constraint block of the destination descriptor.
32 Verification Intellectual Property Recommended Practices Version 1.0

The from argument is a required input argument. The to argument is optional and, if not null, provides a
reference to the destination descriptor and shall be returned by the function. If the to argument is null, the
convert() method allocates a new OUT-type object and returns that.

In the OVM-to-VMM case, the convert() method takes an ovm_transaction extension as an
argument and returns the corresponding vmm_data extension. In the VMM-to-OVM case, the vmm_data
extension is the input argument and the method returns an ovm_transaction extension.

5.5.7 Sample code

This illustrates how to implement this practice.

class apb_rw_convert_ovm2vmm;
 static function vmm_apb_rw convert(ovm_apb_rw from,
 vmm_apb_rw to=null);
 if (to == null)
 convert = new;
 else
 convert = to;
 case (from.cmd)
 ovm_apb_rw::RD : convert.kind = vmm_apb_rw::READ;
 ovm_apb_rw::WR : convert.kind = vmm_apb_rw::WRITE;
 endcase
 convert.addr = from.addr;
 convert.data = from.data;
 convert.data_id = from.get_transaction_id();
 convert.scenario_id = from.get_sequence_id();
 endfunction
endclass

The avt_analysis_channel class (see 5.8) uses the converter class, as shown:

class avt_analysis_channel#(type OVM=int,
VMM=int,
OVM2VMM=avt_converter #(OVM,VMM),
VMM2OVM=avt_converter #(VMM,OVM))

extends ovm_component;
...

function void write(OVM ovm_t);
VMM vmm_t;
if (ovm_t == null)

return;
vmm_t = OVM2VMM::convert(ovm_t);
chan.sneak(vmm_t);

endfunction
...
endclass

The implementation of write() in the analysis_channel adapter calls the convert() method of the type
parameter passed in. To hide the details from the user, the convert() method is called in clone mode so a
new VMM type object is created. The integrator specifies the one-to-one mapping from OVM to VMM data
fields. A separate converter object is used for the reverse operation. This allows the same conversion
mechanism to be used between arbitrary correlated types, regardless of the underlying library being used.

Using a static method allows convert() to be called via the type parameter without requiring the
adapter to instantiate (and allocate) an instance of the converter.
Version 1.0 Verification Intellectual Property Recommended Practices 33

Only the data fields are passed from one library to the other. The convert() method(s) simply map
between fields. This does not allow, for example, constraints to be passed across the library boundary.
Enacting a methodology in which no additional information needs to be communicated across the boundary
eliminates dependencies between the components in one library and data in the other.

5.6 TLM to channel

5.6.1 Practice name

TLM to channel

5.6.1.1 Also known as

OVM producer to VMM consumer; Channel adapter.

5.6.1.2 Related practices

Meta-composition (5.3), Data conversion (5.5), and Channel to TLM (5.7).

5.6.2 Intent

This practice enables any OVM producer component communicating via TLM ports and exports to
communicate at the transaction level with any VMM consumer communicating via a vmm_channel. Per
OSCI TLM convention (see [B1]), such a component is referred to as a “bridge.” In this document, it is
referred to as an “adapter.”

5.6.2.1 Motivation

When integrating OVM and VMM components, each component has established semantics that define the
communication and the mechanics of establishing the communication path. This practice and the supporting
adapter is designed to present the OVM interface on the “OVM side” and the VMM interface on the “VMM
side,” thus allowing the two components to interoperate.

For OVM components, the communication semantics of a particular connection are fully defined by the set
of ports and/or exports used to establish the connection. In VMM, the vmm_channel API supports
multiple semantics depending on the implementation of the consumer. The avt_tlm2channel adapter (see
5.6.4) allows connection to any established VMM consumer and properly converts the desired semantics of
the vmm_channel connection(s) used by it into the corresponding TLM semantics required by the OVM
producer, regardless of which TLM port/export it uses.

5.6.2.2 Consequences

Integrators need to provide an implementation of the Data conversion (5.5) practice for converting OVM
requests to VMM requests and, when separate responses are involved, converting VMM responses to OVM
responses.

Integrators of VMM-on-top environments need to apply the Meta-composition (5.3) practice to define a
simple OVM component that contains (wraps) all OVM VIP and adapters used in any given VMM scope.
This enables port connections between OVM components to be made in the connect phase of the OVM
wrapper.
34 Verification Intellectual Property Recommended Practices Version 1.0

5.6.3 Applicability

This practice is useful for connecting an OVM producer to a VMM consumer that uses the vmm_channel
to communicate.

5.6.4 Structure

The overall structure for this practice is based on the following diagrams, prototype, and participants.

5.6.4.1 Class diagram

The class diagram for this practice is shown in Figure 10.

Figure 10—avt_tlm2channel class extension

5.6.4.2 Declaration prototype

This practice uses the following declaration prototype.

class avt_tlm2channel
#(type OVM_REQ = int,

 VMM_REQ = int,
 OVM2VMM_REQ = int,
 VMM_RSP = VMM_REQ,
 OVM_RSP = OVM_REQ,
 VMM2OVM_RSP = avt_converter #(VMM_RSP, OVM_RSP))
 extends ovm_component;

See 6.1 for a description of each type parameter. The default type values for the first three parameters are
declared as int in the prototype to allow the compiler to report a type mismatch if these parameters are not
explicitly set to a meaningful type. The user would declare a specialization of the adapter as

typedef avt_tlm2channel
 #(ovm_apb_rw, vmm_apb_rw,
 apb_rw_convert_ovm2vmm,
 vmm_apb_rw,ovm_apb_rw,
 apb_rw_convert_vmm2ovm) apb_tlm2channel;

5.6.4.3 Interaction diagrams

The interaction diagrams for this practice are shown in Figure 11. A single avt_tlm2channel adapter
instance (see 6.6) enables connection of one of the OVM producer types on the left to one of the VMM
consumer types on the right, subject to the collaboration requirements and limitations set forth in Table 4.

vmm_channelavt_tlm2channel

my_tlm2channel

1..2
Version 1.0 Verification Intellectual Property Recommended Practices 35

Figure 11—avt_tlm2channel interaction

5.6.4.4 Participants

Each application of this practice involves the following participants.

— An instance of one and only one of the ovm producer types, including ovm_sequencer,
shown in Figure 11, subject to the collaboration requirements in Table 4.

— An instance of one and only one of the vmm consumer types shown in Figure 11, subject to the
collaboration requirements in Table 4. If the OVM producer requires a return response, the VMM

request_ap response_ap

vmm consumer

vmm_channel (req)

avt_tlm2channel_adapter

seq_item_pull

ovm sequencer
activate req
start
complete
remove

master

analysis

ovm producer

blocking
get_peek

ovm producer

analysis / put

blocking
transport

ovm producer

CHOOSE ONE

blocking
slave

ovm producer

blocking or
non-blocking

master

blocking
transport

passive
blocking

slave
producer

(req / rsp)

push sequence /
pull sequencer

passive
blocking

get_peek
(req / opt. rsp)

blocking_put

ovm sequencerpush sequence /
push sequencer

atomic

vmm consumer

vmm_channel (req)

vmm consumer

vmm_channel (req)

vmm_channel (rsp)

vmm consumer

vmm_channel (req)

vmm consumer

vmm_channel (req)

vmm_channel (rsp)

vmm consumer

vmm_channel (req)

vmm_channel (rsp)

CHOOSE ONE

vmm consumer

get
fork
 indicate ENDED
join_none

peek
indicate ENDED
get

peek
get

peek /
get

simple

vmm_channel (req)

pipelined

get req
indicate ENDED

sneak rsp

atomic
req / rsp

pipelined
req / rsp

get req
fork
 indicate ENDED
 sneak rsp
join_none

get req
fork
 do
 sneak rsp
 while
join_none

multiple
rsps

put

ovm producerblocking or
non-blocking

put

sequence
sequence

sequence
sequence

analysis
36 Verification Intellectual Property Recommended Practices Version 1.0

consumer needs to also provide a response. In cases where the VMM consumer annotates the origi-
nal request with the response rather than sending the response via a separate channel, this condition
is met if the adapter’s rsp_is_req bit is set (see 6.7.6.1). If the OVM producer does not take a
response, it can still be paired with a VMM consumer that provides responses in a separate response
channel provided that channel is sunk, e.g., rsp_chan.sink().

— An instance of a request vmm_channel. Typically, the VMM consumer allocates its own channel,
which is subsequently passed to the avt_tlm2channel adapter’s constructor (see 6.6).

— An instance of a response vmm_channel if the selected VMM consumer uses a separate channel
for responses. Typically, the VMM consumer allocates its own channel, which is subsequently
passed to the avt_tlm2channel adapter’s constructor.

— An instance of the avt_tlm2channel adapter whose type parameters are matched to the types used
by the OVM producer and VMM consumer.

5.6.5 Collaboration

An active OVM producer injects transactions into the avt_tlm2channel (see 6.6) adapter via a TLM port,
while a passive OVM producer responds to requests for new transactions via a TLM export. In the latter
case, the adapter forks processes that make requests for new transactions and delivers their responses. The
adapter automatically handles the completion of the transaction, regardless of how it is signalled by the
VMM consumer.

When the adapter receives an OVM request transaction, it employs the user-defined converter to create an
equivalent VMM transaction. This new VMM transaction is then put into the request vmm_channel.

The VMM consumer uses peek, get, or the active slot to retrieve transactions from the request
vmm_channel. Depending on its completion model, it indicates transaction completion in one of several
ways, each of which shall be accommodated by the adapter.

a) The VMM consumer using only the request channel may annotate the response in the original
request, indicate the ENDED status in the original request, then remove the transaction from the
channel using get or remove. The call to get or remove tells the adapter a response is ready to
be sent back to the OVM producer in the form of a modified request.

1) Atomic

forever begin
 vmm_apb_rw tr;
 this.out_chan.activate(tr);
 // Pre-exec callbacks - could be tasks
 this.out_chan.start();
 // 'tr' executed and annotated with response
 this.out_chan.complete();
 // Post-exec callbacks - could be tasks
 this.out_chan.remove();
end

2) peek/get

forever begin
 vmm_apb_rw tr;
 this.out_chan.peek(tr);
 tr.notify.indicate(vmm_data::STARTED);
 // 'tr' executed and annotated with response
 tr.notify.indicate(vmm_data::ENDED);
 this.out_chan.get(tr);
end
Version 1.0 Verification Intellectual Property Recommended Practices 37

3) Simple

forever begin
 vmm_apb_rw tr;
 this.out_chan.peek(tr);
 // 'tr' executed and annotated with response
 this.out_chan.get(tr);
end

b) A pipelined VMM consumer uses get to retrieve requests from the channel. Multiple requests may
be executing in parallel, so get can not be used by the adapter to indicate availability of a response.
After a request is executed, the consumer annotates the response and indicates the ENDED status in
the original request. The adapter needs to watch for each pending requests’s ENDED status to deter-
mine when to send a corresponding response back to the OVM producer.

forever begin
 vmm_apb_rw tr;
 // Wait for pipeline to be ready to accept transaction
 this.out_chan.get(tr);
 fork
 begin
 // 'tr' executed and annotated with response
 tr.notify.indicate(vmm_data::ENDED);
 begin
 join_none
end

c) A VMM consumer using a separate response channel sneaks responses to that channel upon com-
pletion of each request. The adapter has an active process that gets responses from the response
channel and converts them to OVM responses, which are then sent back to the OVM producer.

1) Atomic request/response

forever begin
 apb_req req;
 apb_rsp rsp;
 this.req_chan.get(req);
 rsp = new(req);
 // 'req' executed and 'rsp' annotated with response
 req.notify.indicate(vmm_data::ENDED, rsp);
 this.rsp_chan.sneak(rsp); // better than using put()
end

2) Pipelined request/response

forever begin
 apb_req req;
 // Wait for pipeline to be ready to accept transaction
 this.req_chan.get(req);
 fork
 begin
 apb_rsp rsp;
 rsp = new(req);
 // 'req' executed and 'rsp' annotated with response
 req.notify.indicate(vmm_data::ENDED, rsp);
 this.rsp_chan.sneak(rsp); // Can also use put()
 end
 join_none
end

3) Multiple responses

forever begin
 apb_req req;
 this.req_chan.get(req);
38 Verification Intellectual Property Recommended Practices Version 1.0

 fork
 do begin
 apb_rsp rsp;
 rsp = new(req);
 // 'req' executed and 'rsp' annotated with response
 this.rsp_chan.sneak(rsp);
 end while …;
 join_none
end

However the VMM consumer indicates the completion of a request or the availability of a response
transaction, the adapter detects completion of each VMM request, matches it with the original OVM request
(using their unique transaction ids), converts it to an OVM response, and deliver it back to the OVM
producer.

Table 4 provides collaboration requirements and limitations for each of the possible OVM producer / VMM
consumer pairings.

Table 4—avt_tlm2channel collaborations

 VMM
consumer

OVM
producer

Atomic1

1Adaptor’s rsp_is_req bit needs to be set. VMM_REQ and VMM_RSP types shall be the same.

peek /get1 Simple1 Pipeline1,2

2Requires the adapter wait for pending vmm_data::ENDED notifications.

Atomic
with rsp
channel

Pipelined
rsp

channel

Multiple
response

rsp
channel

Sequencer yes yes yes yes yes yes yes

Push
sequencer

yes yes yes yes yes yes yes

Blocking or
non-blocking

put
yes yes yes yes yes3

3Needs to sink the adapter’s response channel.

yes3 yes3

Blocking
transport yes yes yes yes yes yes4

4May create idle cycles in the pipeline between requests.

no

Blocking or
non-blocking

master
yes yes yes yes yes yes yes

Passive
blocking slave yes yes yes yes yes yes yes

Passive
blocking
get / peek

yes yes yes yes yes3 yes3 yes3

Passive
blocking
get / peek
with rsp

yes yes yes yes yes yes yes
Version 1.0 Verification Intellectual Property Recommended Practices 39

5.6.6 Implementation

To implement the practice, the integrator instantiates an OVM producer, a VMM consumer, and an
avt_tlm2channel adapter (see 5.6.4) whose parameter values correspond to the OVM and VMM data types
used by the producer and consumer and the converter types used to translate in one or both directions. If the
default vmm_channels created by the VMM consumer or adapter are not used, the integrator shall also
instantiate a request vmm_channel and a response vmm_channel if the VMM consumer uses one.

Integrators of VMM-on-top environments need to instantiate the OVM consumer and adapter via an OVM
wrapper component. This wrapper component serves to provide the connect method needed to bind the
OVM ports and exports.

5.6.7 Sample code

This section illustrates how to implement this practice within an OVM and VMM environment. The two
examples share the following typedef.

typedef avt_tlm2channel #(ovm_apb_rw, vmm_apb_rw,
apb_rw_convert_ovm2vmm,
vmm_apb_rw,ovm_apb_rw,
apb_rw_convert_vmm2ovm) apb_tlm2channel;

5.6.7.1 OVM-on-top

class env extends ovm_component;

 `ovm_component_utils(env)

ovm_producer #(ovm_apb_rw) o_prod;
vmm_consumer #(vmm_apb_rw) v_cons;
apb_tlm2channel adapter;

function new (string name="env",ovm_component parent=null);
super.new(name,parent);

endfunction

virtual function void build();
o_prod = new("o_prod", this);
v_cons = new("v_cons",0);
adapter = new("adapter",this,v_cons.in_chan);

endfunction

virtual function void connect();
o_prod.blocking_put_port.connect(adapter.put_export);

endfunction

...
endclass

5.6.7.2 VMM-on-top

class env extends avt_vmm_ovm_env;

‘ovm_build
ovm_producer #(ovm_apb_rw) o_prod;
vmm_consumer #(vmm_apb_rw) v_cons;
apb_tlm2channel adapter;
40 Verification Intellectual Property Recommended Practices Version 1.0

function new (string name="env");

super.new(name);

endfunction

virtual function void build();

o_prod = new("o_prod", this);

v_cons = new("v_cons",0);

adapter = new("adapter",this,v_cons.in_chan);

o_prod.blocking_put_port.connect(adapter.put_export);

ovm_build();

endfunction

...

endclass

5.7 Channel to TLM

5.7.1 Practice name

Channel to TLM

5.7.1.1 Also known as

VMM producer to OVM consumer; Channel adapter.

5.7.1.2 Related practices

Meta-composition (5.3), Data conversion (5.5), and TLM to channel (5.6).

5.7.2 Intent

This practice is intended to enable any VMM producer component communicating via a vmm_channel to
communicate at the transaction level with any OVM consumer communicating via TLM ports and exports.

5.7.2.1 Motivation

When integrating OVM and VMM components, each component has established semantics that define the
communication and the mechanics of establishing the communication path. This practice and its supporting
adapter are designed to present an OVM-compliant interface on the “OVM side” and a VMM-compliant
interface on the “VMM side,” thus allowing the two components to interoperate.

For OVM components, the communication semantics of a particular connection are fully defined by the set
of ports and/or exports used to establish the connection. In VMM, the vmm_channel API supports
multiple semantics depending on the implementation of the consumer. The avt_channel2tlm adapter (see
5.7.4) allows connection to any established VMM producer and properly converts the desired semantics of
the vmm_channel connection(s) used by it into the corresponding TLM semantics required by the OVM
consumer, regardless of which TLM port/export it uses, subject to the clarifications specified in the
footnotes to Table 5.
Version 1.0 Verification Intellectual Property Recommended Practices 41

5.7.2.2 Consequences

Integrators need to provide an implementation of the Data conversion (5.5) practice for converting VMM
requests to OVM requests and, when separate responses are involved, converting OVM responses to VMM
requests.

Integrators of VMM-on-top environments need to apply the Meta-composition (5.3) practice to define a
simple OVM component that contains (wraps) all OVM VIP and adapters used in any given VMM scope.
This enables port connections between OVM components to be made in the connect phase of the OVM
wrapper.

The VMM producer is more likely aware of channel size requirements for its own completion model than
the generic avt_channel2tlm adapter (see 6.7). Thus, the practice recommends letting the VMM producer
allocate its own channel, then passing that channel to the adapter via its constructor. A consequence of this
recommendation is the VMM producer needs to be allocated prior to the adapter.

When using the blocking_put_port of the avt_channel2tlm adapter, a tlm_fifo should not be
used as the consumer.

5.7.3 Applicability

This practice is useful for connecting VMM producer components that use vmm_channels to
communicate to OVM consumers.

5.7.4 Structure

The overall structure for this practice is based on the following diagrams, prototype, and participants.

5.7.4.1 Class diagram

The class diagram for this practice is shown in Figure 12.

Figure 12—avt_channel2tlm derived class

5.7.4.2 Declaration prototype

This practice uses the following declaration prototype.

class avt_channel2tlm_adapter #(type VMM_REQ = int,
OVM_REQ = int,
VMM2OVM_REQ = int,
OVM_RSP = OVM_REQ,
VMM_RSP = VMM_REQ,

vmm_channelavt_channel2tlm

my_channel2tlm

1..2
42 Verification Intellectual Property Recommended Practices Version 1.0

OVM2VMM_RSP = avt_converter #(OVM_RSP,VMM_RSP),
OVM_MATCH_REQ_RSP=avt_match_ovm_id)

extends ovm_component;

function new(string name = “avt_channel2tlm”,
ovm_component parent = null,
vmm_channel_typed #(VMM_REQ) req_chan = null,
vmm_channel_typed #(VMM_RSP) rsp_chan = null,
bit rsp_is_req = 1,
int unsigned max_pending_req = 100);

...
endfunction

See 6.1 for a description of each type parameter.

5.7.4.3 Interaction diagram

The interaction diagram for this practice is shown in Figure 13. A single avt_channel2tlm adapter instance
(see 6.7) enables connection of one of the VMM producer types on the left to one of the OVM consumer
types on the right, subject to the conditions set forth in Table 5.
Version 1.0 Verification Intellectual Property Recommended Practices 43

Figure 13—avt_channel2tlm interaction

5.7.4.4 Participants

Each application of this practice involves the following participants.

— An instance of one and only one of the vmm producer types shown in Figure 13, subject to the
collaboration requirements in Table 5.

— An instance of one and only one of the ovm consumer types shown in Figure 13, subject to the
collaboration requirements in Table 5.

— An instance of a request vmm_channel. Typically, the VMM producer allocates its own channel,
which is subsequently passed to the avt_channel2tlm adapter’s constructor (see 6.7).

— An instance of a response vmm_channel if the selected VMM producer uses a separate channel for
responses. Typically, the VMM producer allocates its own channel, which is subsequently passed to
the avt_channel2tlm adapter’s constructor.

— An instance of the avt_channel2tlm adapter whose type parameters are matched to the types used
by the VMM producer and OVM consumer.

request_ap response_ap

vmm producer

vmm_channel (req)

avt_channel2tlm_adapter

seq_item_pull

ovm consumer

put

blocking
master

analysis

ovm consumer

get_peek

ovm consumer

put

blocking
transport

ovm consumer

CHOOSE ONE

slave

ovm consumer

passive
blocking
master

passive
blocking
transport

blocking or
non-blocking
slave

driver

blocking or
non-blocking
get_peek

blocking
put

ovm consumer passive
blocking
put

atomic

vmm producer

vmm_channel (req)put

vmm producer

vmm_channel (req)put

get vmm_channel (rsp)

blocking

vmm producer

vmm_channel (req)sneak
fork
 wait_for ENDED
join_none

non-blocking

blocking
req / rsp

vmm producer

vmm_channel (req)put

vmm_channel (rsp)

non-blocking
req / rsp

vmm producer

vmm_channel (req)put

get vmm_channel (rsp)

out-of-order
mult. rsps

fork
 get
join_none

wait_for
 ENDED

CHOOSE ONE

blocking
transport

blocking
master

blocking
put

seq_item_pull

analysis

put

get_peek

slave

analysis analysis
44 Verification Intellectual Property Recommended Practices Version 1.0

5.7.5 Collaboration

The VMM producer uses put or sneak VMM-typed transactions into the request vmm_channel.

An active OVM consumer initiates requests for new transactions via its port, which can be of any interface
type depicted in Figure 13. New request transactions are obtained by calling the port’s peek or get
method, which end up calling the avt_channel2tlm (see 6.7) adapter’s peek or get via its corresponding
export. In response, the adapter fetches a VMM transaction from the channel, converts it to OVM, and
returns.

A passive OVM consumer implements a put method that is called via its export. If either of the adapter’s
blocking master or blocking put ports are connected, the adapter forks a process that continually fetches
transactions from the channel, converts them to OVM, and sends them to the consumer via its port.

Depending on what type is being adapted, the VMM producer may expect responses to be annotated in the
original requests and it may wait for request’s ENDED status to determine when a valid response is available.
The OVM consumer delivers responses explicitly. To accommodate this, the adapter stores handles to all
outstanding requests so it can correlate incoming responses from the OVM consumer to the originating
VMM requests. When a match is found, the adapter employs the user-defined response converter to
annotate the response back into the original request and indicate the request’s ENDED status. By default, the
adapter holds a maximum of 100 pending requests. The depth may be set via the max_pending_req
constructor argument, or by setting the max_pending_req value directly. A FATAL error is reported if
the number of pending requests exceeds max_pending_req.

There are several types of VMM producer semantics that are supported by this adapter.

a) Atomic

forever begin
 vmm_apb_rw tr = new;
 // Fill in response part of 'tr'
 this.out_chan.put(tr);
 // 'tr' annotated with response
end
Requires: out_chan.full_level() == 1

b) Blocking

forever begin
 vmm_apb_rw tr = new;
 // Fill in response part of 'tr'
 this.out_chan.put(tr);
 tr.notify.wait_for(vmm_data::ENDED);
 // 'tr' annotated with response
 // or response in ENDED status
end

c) Non-blocking

forever begin
 vmm_apb_rw tr = new;
 // Fill in response part of 'tr'
 this.out_chan.sneak(tr);
 fork
 begin
 tr.notify.wait_for(vmm_data::ENDED);
 // 'tr' annotated with response
 // or response in ENDED status
 end
 join_none
Version 1.0 Verification Intellectual Property Recommended Practices 45

 // Need some other blocking mechanism in this thread
end
//Required: The producer thread shall block using an external mechanism.
//This is not supported in non-atomic cases.

d) Blocking request/response

forever begin
 apb_req req = new;
 apb_rsp rsp;
 this.req_chan.put(req); // Can use sneak() too
 this.rsp_chan.get(rsp);
end
//Required: Consumer needs to provide one response per request,
//in the same order

e) Non-blocking request/response

forever begin
 apb_req req = new;
 this.req_chan.sneak(req);
 fork
 begin
 apb_rsp rsp;
 this.rsp_chan.get(rsp);
 end
 join_none
end
//Required:
// 1. The producer thread shall block using an external mechanism.
// 2. The consumer shall provide one response per request, in same order.

f) Out of order/multiple responses

fork
 forever begin
 apb_req req = new;
 this.pending_reqs.push_back(req);
 this.req_chan.put(req);
 end

 forever
 apb_rsp rsp;
 this.rsp_chan.get(rsp);
 foreach(this.pending_reqs[i]) begin
 if (rsp.is_response_to(this.pending_reqs[i])) begin
 // Handle response
 rsp = null;
 break;
 end
 end
 assert (rsp == null);
 end
join
//Required: Needs a user-defined mechanism to correlate the response
//with the request.
46 Verification Intellectual Property Recommended Practices Version 1.0

Table 5 provides collaboration requirements and limitations for each of the possible OVM producer / VMM
consumer pairings pictured in Figure 13.

5.7.6 Implementation

To implement the practice, the integrator instantiates a VMM producer, an OVM consumer, and an
avt_channel2tlm adapter (see 5.7.4) whose parameter values correspond to the VMM and OVM data types
used by the producer and consumer and the converter types used to translate in one or both directions. If the
default vmm_channels created by the VMM producer or adapter are not used, the integrator shall also
instantiate a request vmm_channel and, possibly, a response vmm_channel if the VMM producer uses
one.

Integrators of VMM-on-top environments need to instantiate the OVM consumer and adapter via an OVM
container or wrapper component. This wrapper component serves to provide the connect method
needed to bind the OVM ports and exports.

5.7.7 Sample code

This illustrates how to implement this practice.

typedef avt_channel2tlm #(vmm_apb_rw,ovm_apb_rw,
apb_rw_convert_vmm2ovm,
ovm_apb_rw, vmm_apb_rw,
apb_rw_convert_ovm2vmm) apb_channel2tlm;

Table 5—avt_channel2tlm collaborations

 OVM
consumer

VMM
producer

Sequence
driver get / peek

get / peek
with rsp

Blocking
or non-

blocking
slave

Passive
blocking
transport

Passive
blocking
master

Passive
blocking

put

Atomic1

1Need rsp_is_req bit set, need OVM2VMM_RSP converter. VMM_REQ and VMM_RSP shall be the same.

yes2 or 3

2Needs to do peek, annotate response in request, then get.
3Needs to provide an explicit response.

yes2 yes yes yes yes4

4Needs to get responses in order. Do not get from channel until it has a response.

yes5

5Needs to annotate response in request before returning from put. Responses are delivered in-order.

Blocking1 yes2 or 3 yes2 yes yes yes yes4 yes5

Non-blocking1 yes2 or 3 yes2 yes yes yes yes yes5

Blocking rsp
channel yes3 n/a yes yes yes yes yes5

Non-blocking
rsp channel yes3 n/a yes yes yes yes yes5

Out-of-order
multiple

responses rsp
channel

yes3 n/a yes yes yes yes yes5
Version 1.0 Verification Intellectual Property Recommended Practices 47

5.7.7.1 OVM-on-top

class env extends ovm_component;

apb_rw_atomic_gen v_prod;
ovm_consumer #(ovm_apb_rw)o_cons;
apb_channel2tlm adapter;

function new (string name="env",ovm_component parent=null);
super.new(name,parent);

endfunction

virtual function void build();
v_prod = new("v_prod",1);
o_cons = new("o_cons", this);
adapter = new("adapter",this,v_prod.out_chan);

endfunction

 // Connect - Connect the OVM producer to the channel
 // adapter using standard port connections.

virtual function void connect();
o_cons.blocking_get_port.connect(adapter.get_peek_export);

endfunction
endclass

5.7.7.2 VMM-on-top

class env extends avt_vmm_ovm_env;

‘ovm_build

apb_rw_atomic_gen v_prod;
ovm_consumer #(ovm_apb_rw)o_cons;
apb_channel2tlm adapter;

function new (string name="env");
super.new(name);

endfunction

virtual function void build();
v_prod = new("v_prod",1);
o_cons = new("o_cons", this);
adapter = new("adapter",this,v_prod.out_chan);
o_cons.blocking_get_port.connect(adapter.get_peek_export);
ovm_build();

endfunction

...
endclass

5.8 Analysis to channel / Channel to analysis

5.8.1 Practice name

Analysis channel
48 Verification Intellectual Property Recommended Practices Version 1.0

5.8.1.1 Also known as

OVM publisher to VMM channel; VMM channel to OVM subscriber; analysis port to channel; channel to
analysis port.

5.8.1.2 Related practices

Data conversion (see 5.5), TLM to channel (5.6), and Channel to TLM (5.7).

5.8.2 Intent

Allows a component to emit a transaction object to multiple consumers, each of which gets a reference to (or
optionally a copy of) the source transaction.

5.8.2.1 Motivation

It is common for one component, such as a monitor, to emit transactions to multiple other components, such
as coverage collectors and/or scoreboards. Each recipient is unaware other recipients exist and the
functionality of the source component needs to be independent of the number of possible recipients.

5.8.2.2 Consequences

For the VMM user, one-to-many communication may be performed as in a VMM-only environment, in
which the source may be connected to a vmm_broadcast and/or use vmm_notify and/or callbacks to
publish a transaction to multiple possible recipients. In the case of the vmm_broadcast, the originating
vmm_xactor communicates to the broadcast via a single vmm_channel, and each target of the
vmm_broadcast is similarly connected via a specific vmm_channel. For a discussion of the
vmm_notify usage, see 5.9. For a discussion of the callback usage, see 5.10.

For the OVM user, one-to-many communication is accomplished using an ovm_analysis_port. To
connect to VMM recipients, the avt_analysis_channel’s analysis_export is connected to the
analysis_port (see 6.8). The VMM recipient may then get the transaction out of the adapter’s
underlying channel.

5.8.3 Applicability

The avt_analysis_channel (see 6.8) allows the VMM source to put() or sneak() the transaction into
the adapter’s underlying vmm_channel. One or more OVM subscribers may then connect to the adapter’s
analysis_port to receive the transaction via the write() method. The advantage of the analysis
adapter over the broadcast approach is that the data conversion is only performed once for all OVM
recipients (see Figure 15).

When the OVM source publishes the transaction to its analysis_port, the avt_analysis_channel places
the converted transactions in the underlying channel via the sneak() method (which is non-blocking). If
multiple VMM recipients are required, then a vmm_broadcast’s input channel may be connected to the
analysis adapter’s channel and multiple VMM transactors may then be connected via their own channels to
the vmm_broadcast. This allows multiple VMM recipients while only requiring a single conversion.

5.8.4 Structure

The overall structure for this practice is based on the following diagrams, prototype, and participants.
Version 1.0 Verification Intellectual Property Recommended Practices 49

5.8.4.1 Class diagram

The class diagram for this practice is shown in Figure 14.

Figure 14—avt_analysis_channel class

5.8.4.2 Declaration prototype

The avt_analysis_channel (see 6.8) is extended from ovm_component as follows.

class avt_analysis_channel #(type OVM=int, VMM=int,
 OVM2VMM=avt_converter #(OVM,VMM),
 VMM2OVM=avt_converter #(VMM,OVM))
 extends ovm_component;

5.8.4.3 Interaction diagrams

Figure 15 shows the structure with a vmm_xactor connected to an avt_analysis_channel object (see 6.8).
Each of the ovm_subscriber targets gets its transaction from the analysis_port of the
avt_analysis_channel.

Figure 15—vmm_xactor to multiple ovm_subscriber

Figure 16 shows the structure with an ovm_analysis_port connected to multiple analysis adapters.
The target vmm_xactors are connected via shared reference to the underlying vmm_channel in each
avt_analysis_channel. These vmm_xactors would simply get the transactions from the appropriate
channel and process them in some application-specific way.

NOTE—The avt_analysis_channel could also be connected on the VMM side to a vmm_broadcast which could, in
turn, connect to multiple vmm_xactors. In this case, the OVM-to-VMM data conversion would only need to be done
once.

vmm_channel

ovm_component

avt_analysis_channel
1

vmm_xactor

avt_analysis_channel

analysis_port

ovm_subscriber

analysis_export

ovm_subscriber
50 Verification Intellectual Property Recommended Practices Version 1.0

Figure 16—ovm_analysis_port to vmm_channel_adapters

5.8.4.4 Participants

On the OVM side, the vmm_analysis_adapter is used to connect to the originating
ovm_analysis_port. On the VMM side, the vmm_channel inside the adapter is used as any
vmm_channel would be.

5.8.5 Collaboration

In the OVM-to-VMM case, the write() method of the adapter (see the write() function declaration in
5.8.4.2) takes an ovm_transaction extension as an argument, converts it to the corresponding
vmm_data extension, and inserts the transaction into the underlying vmm_channel via the sneak()
method. In the VMM-to-OVM case, when a vmm_data extension object is put into the adapter’s
vmm_channel, the adapter automatically gets the transaction from the channel, converts it to the OVM
transaction type, and publishes it to the adapter’s analysis_port. The OVM subscriber(s) receives the
transaction via the adapter’s analysis_port (see 6.8).

5.8.6 Implementation

To implement the practice, the integrator connects the avt_analysis_channel to the
ovm_component on the OVM side, and its underlying vmm_channel is connected to the
vmm_xactor.

5.8.7 Sample code

This illustrates how to implement this practice.

a) To write an OVM transaction to multiple VMM recipients in an OVM container, and vice-versa,
use:

class example extends ovm_component;

 // OVM source -> VMM sink
 ovm_publish #(ovm_apb_rw) o_prod;
 vmm_consumer #(apb_rw) v_cons;
 apb_analysis_channel o_to_v;

 // VMM source -> OVM sink
 apb_rw_atomic_gen v_prod;
 ovm_subscribe #(ovm_apb_rw) o_cons;
 apb_analysis_channel v_to_o;

 function new(string name, ovm_component parent=null);
 super.new(name,parent);
 endfunction

vmm_xactor

vmm_xactor

ovm_component

avt_analysis_channel

avt_analysys_channel
Version 1.0 Verification Intellectual Property Recommended Practices 51

 virtual function void build();

 o_prod = new("o_prod",this);
 v_cons = new("v_cons");
 o_to_v = new("o_to_v ",this, v_cons.in_chan);

 v_prod = new("v_prod");
 o_cons = new("o_cons",this);
 v_to_o = new("v_to_o",this, v_prod.out_chan);

 v_prod.stop_after_n_insts = 1;

 endfunction

 virtual function void connect();
 o_prod.out.connect(o_to_v.analysis_export);
 v_to_o.analysis_port.connect(o_cons.analysis_export);
 endfunction

 virtual task run();
 v_cons.start_xactor();
 v_prod.start_xactor();
 endtask

endclass

b) To write an VMM transaction to multiple OVM recipients in an VMM container, and vice-versa,
use:

class example extends vmm_xactor;

 // OVM source -> VMM sink
 ovm_publish #(ovm_apb_rw) o_prod;
 vmm_consumer #(apb_rw) v_cons;
 apb_analysis_channel o_to_v;

 // VMM source -> OVM sink
 apb_rw_atomic_gen v_prod;
 ovm_subscribe #(ovm_apb_rw) o_cons;
 apb_analysis_channel v_to_o;

 function new(...);
 super.new(...);

 o_prod = new("o_prod",);
 v_cons = new("v_cons");
 o_to_v = new("o_to_v ", , v_cons.in_chan);

 v_prod = new("v_prod");
 o_cons = new("o_cons",);
 v_to_o = new("v_to_o", , v_prod.out_chan);

 v_prod.stop_after_n_insts = 1;

o_prod.out.connect(o_to_v.analysis_export);
 v_to_o.analysis_port.connect(o_cons.analysis_export);
 endfunction

 virtual task start();
52 Verification Intellectual Property Recommended Practices Version 1.0

 v_cons.start_xactor();
 v_prod.start_xactor();
 endtask

endclass

5.9 Notify to analysis / Analysis to notify

5.9.1 Practice name

Notification service adapter (analysis_port)

5.9.1.1 Also known as

Analysis port to VMM indicate; VMM indicate to analysis export; OVM publisher to VMM notification;
VMM notification to OVM subscriber.

5.9.1.2 Related practices

None.

5.9.2 Intent

Allows a VMM component with a vmm_notify instance to be connected to one or more OVM
components with an ovm_analysis_export. Allows an OVM component with an
ovm_analysis_port to be connected to one or more VMM components with a vmm_notify instance.

5.9.2.1 Motivation

In addition to communicating via transaction descriptors, components may communicate transaction-
asynchronous or non-transactional information. The “source” indicates that information is available and one
or more “listeners” react to that information. In VMM, this may be accomplished using the notification
service provided by the vmm_notify class. In OVM, this may be accomplished using analysis ports.

5.9.2.2 Consequences

In addition to using different notification mechanisms, the attached status descriptor uses a different
SystemVerilog type to describe the same information. The OVM status descriptor would be based on the
ovm_sequence_item class, whereas the VMM status descriptor would be based on the vmm_data
class. In addition to providing an adapter component with an OVM-compliant analysis interface and a
vmm_notify, this practice needs to perform the necessary translation of the transaction descriptor.

Theoretically, it is possible for the type of the status descriptor associated with a single VMM notification to
be of different types, but that does not happen in practice, and it is a reasonable limitation to require that a
VMM notification carries a consistent status object type to be adapted to an ovm_analysis_port.

5.9.3 Applicability

This practice can connect a notification in a vmm_notify to an ovm_analysis_port and an
ovm_analysis_port to a notification in a vmm_notify instance.

5.9.4 Structure

The overall structure for this practice is based on the following diagrams, prototype, and participants.
Version 1.0 Verification Intellectual Property Recommended Practices 53

5.9.4.1 Class diagram

The class diagram for this practice is shown in Figure 17.

Figure 17—analysis_port class

5.9.4.2 Declaration prototype

This practice uses the following declaration prototype.

class avt_analysis2notify #(type OVM = int, VMM = int, OVM2VMM = int)
extends ovm_component;

class avt_notify2analysis #(type VMM = int, OVM = int, VMM2OVM = int)
extends ovm_component;

5.9.4.3 Interaction diagrams

The interaction diagram for this practice is shown in Figure 18.

Figure 18—Using avt_analysis2notify and avt_notify2analysis for sideband communication

5.9.4.4 Participants

In addition to the OVM and VMM source/sink components, the adapters are instantiated to covert any status
objects. An OVM component with an analysis port writes objects on that port whenever relevant. A VMM
component, listening to the corresponding VMM notification, receives a VMM version of that object. A

ovm_component

avt_analysis2notify_adapter avt_notify2analysis_adapter

avt_notify2analysis

OVM
publisher avt_analysis2notify

convert&indicate
notify notify

cb

VMM
watcher

func

VMM
notifier

notify notify cb
convert&write

OVM
subscriber
54 Verification Intellectual Property Recommended Practices Version 1.0

VMM component indicates a notification with a status object whenever relevant. An OVM component,
listening to the corresponding analysis export, receives an OVM version of that object.

5.9.5 Collaboration

A VMM source indicates a notification using the vmm_notify::indicate() method. The adapter
converts the notification status data into an OVM status transaction. The adapter then publishes the status
transaction to its analysis_port, to which multiple OVM listeners may connect.

An OVM source publishes a status transaction on an analysis port using the write() method. The adapter
converts the published status transaction into a VMM status descriptor. The adapter indicates the
corresponding notification in its vmm_notify object, to which multiple VMM listeners may listen.

5.9.6 Implementation

To implement the practice, the integrator instantiates the appropriate adapter, parameterized according to the
OVM and VMM data types, and the corresponding converter classes. The analysis port or export is
connected to the desired OVM component(s). The desired vmm_notify object may be passed into the
adapter as a constructor argument or assigned directly.

5.9.7 Sample code

This illustrates how to implement this practice.

5.9.7.1 VMM-on-top

typedef avt_analysis2notify
 #(ovm_apb_rw,vmm_apb_rw,
 apb_rw_convert_ovm2vmm) apb_analysis2notify_adapter;

typedef avt_notify2analysis
 #(vmm_apb_rw,ovm_vmm_apb_rw,
 apb_rw_convert_vmm2ovm) apb_notify2analysis_adapter;

class tb_env extends vmm_env;
vmm_sink vmm_snk;
ovm_src ovm0;
ovm_src ovm1;
ovm_src ovm2;
apb_analysis2notify_adapter o2v_adapter0, o2v_adapter1,o2v_adapter2;

ovm_sink ovm_snk;
vmm_src vmm0;
vmm_src vmm1;
vmm_src vmm2;
apb_notify2analysis_adapter v2o_adapter0, v2o_adapter1, v2o_adapter2;

virtual function void build();

super.build();
this.vmm_snk = new("vmm_snk");

this.o2v_adapter0 = new(“o2v0”, ,vmm_snk.notify,0);
this.o2v_adapter1 = new(“o2v1”, ,vmm_snk.notify,1);
this.o2v_adapter2 = new(“o2v2”, ,vmm_snk.notify,2);
Version 1.0 Verification Intellectual Property Recommended Practices 55

this.ovm0 = ovm_src::type_id::create("tb.ovm0", null);
this.ovm1 = ovm_src::type_id::create("tb.ovm1", null);
this.ovm2 = ovm_src::type_id::create("tb.ovm2", null);

ovm0.ap.connect(o2v_adapter0.analysis_export);
ovm1.ap.connect(o2v_adapter1.analysis_export);
ovm2.ap.connect(o2v_adapter2.analysis_export);

this.ovm_snk = ovm_sink::type_id::create("ovm_snk", ovm_top);

this.vmm0 = new("vmm0");
this.vmm1 = new("vmm1");
this.vmm2 = new("vmm2");

this.v2o_adapter0 = new(“v2o_0”, ,this.vmm0.notify,0);
this.v2o_adapter1 = new(“v2o_1”, ,this.vmm1.notify,0);
this.v2o_adapter2 = new(“v2o_2”, ,this.vmm2.notify,0);
v2o_adapter0.analysis_port.connect(ovm_snk.ap0.exp);
v2o_adapter1.analysis_port.connect(ovm_snk.ap1.exp);
v2o_adapter2.analysis_port.connect(ovm_snk.ap2.exp);

endfunction: build
endclass

Notice this example allows the adapters, ovm_sink, and ovm_src components to be connected in the
build() method after they have been constructed. This is only possible because these particular
components instantiate their relevant ports/exports in their own constructors, which is not typical. See 5.3
for a more detailed discussion of connecting OVM components in a VMM environment.

5.9.7.2 OVM-on-top

typedef avt_analysis2notify
 #(ovm_apb_rw,vmm_apb_rw,
 apb_rw_convert_ovm2vmm) apb_analysis2notify_adapter;

typedef avt_notify2analysis
 #(vmm_apb_rw,ovm_apb_rw,
 apb_rw_convert_vmm2ovm) apb_notify2analysis_adapter;
class ovm_on_top_env extends ovm_env;

vmm_sink vmm_snk;
ovm_src ovm0;
ovm_src ovm1;
ovm_src ovm2;
apb_analysis2notify_adapter o2v_adapter0, o2v_adapter1,o2v_adapter2;

ovm_sink ovm_snk;
vmm_src vmm0;
vmm_src vmm1;
vmm_src vmm2;
apb_notify2analysis_adapter v2o_adapter0, v2o_adapter1, v2o_adapter2;

virtual function void build();
this.vmm_snk = new("vmm_snk");

this.ovm0 = ovm_src::type_id::create("ovm0", this);
this.ovm1 = ovm_src::type_id::create("ovm1", this);
this.ovm2 = ovm_src::type_id::create("ovm2", this);
56 Verification Intellectual Property Recommended Practices Version 1.0

this.v2o_adapter0 = new(“v2o_0”, , this.vmm0.notify, 0);
this.v2o_adapter1 = new(“v2o_1”, , this.vmm0.notify, 0);
this.v2o_adapter2 = new(“v2o_2”, , this.vmm0.notify, 0);

this.ovm_snk = ovm_sink::type_id::create("ovm_snk", ovm_top);

this.vmm0 = new("vmm0");
this.vmm1 = new("vmm1");
this.vmm2 = new("vmm2");

endfunction

virtual function void connect();
ovm0.ap.connect(o2v_adapter0.analysis_export);
ovm1.ap.connect(o2v_adapter1.analysis_export);
ovm2.ap.connect(o2v_adapter2.analysis_export);

v2o_adapter0.analysis_port.connect(ovm_snk.ap0.exp);
v2o_adapter1.analysis_port.connect(ovm_snk.ap1.exp);
v2o_adapter2.analysis_port.connect(ovm_snk.ap2.exp);

endfunction
endclass

5.10 Callback adapter

5.10.1 Practice name

Callback adapter

5.10.1.1 Also known as

One-to-many interconnect; analysis_port/vmm_callback adaptor.

5.10.1.2 Related practices

Data conversion (see 5.5), TLM to channel (see 5.6), Channel to TLM (see 5.7), Analysis to channel /
Channel to analysis (see 5.8), and Notify to analysis / Analysis to notify (see 5.9).

5.10.2 Intent

Allows a VMM component with a callback method to be connected to one or more OVM components with
an analysis export.

5.10.2.1 Motivation

When integrating OVM and VMM components, each component has established semantics that define the
communication of transaction-level information and the mechanics of establishing the communication path.
An adapter can present the OVM semantics on the “OVM side” and the VMM semantics on the “VMM
side.”

5.10.2.2 Consequences

In addition to using different transaction-level communication mechanisms, it is very likely each
methodology would use a different SystemVerilog type to describe the same the transaction. The OVM
transaction descriptor would be based on the ovm_sequence_item class, whereas the VMM transaction
descriptor would be based on the vmm_data class. In addition to providing a callback facade extension
Version 1.0 Verification Intellectual Property Recommended Practices 57

with an OVM-compliant analysis interface, this practice needs to perform the necessary translation of the
transaction descriptor.

5.10.3 Applicability

This practice is useful for connecting an observed transaction or event via a callback method in a
vmm_xactor to an ovm_analysis_port.

5.10.4 Structure

The overall structure for this practice is based on the following class diagrams, prototype, and participants.

5.10.4.1 Class diagram

The class diagram for this practice is shown in Figure 19.

Figure 19—Callback class

5.10.4.2 Declaration prototype

This practice assumes the existence of an appropriate callback method and callback facade class in the
VMM component, e.g.,

class apb_master_cbs extends vmm_xactor_callbacks;
virtual task pre_tr(apb_master xactor,

apw_rw tr,
ref bit drop);

endtask
virtual task post_tr(apb_master xactor,

apw_rw tr);
endtask

endclass

5.10.4.3 Interaction diagrams

The interaction diagram for this practice is shown in Figure 20.

vmm_xactor_callbacks

vip_xactor_callbacks

to_analysis_port
58 Verification Intellectual Property Recommended Practices Version 1.0

Figure 20—VMM callback to OVM analysis_port

5.10.4.4 Participants

This practice requires a VMM transactor with an observation callback method and a OVM subscriber with
an ovm_analysis_export.

Between the producer and subscriber, this practice instantiates a callback object to transfer the observed data
to the analysis port via its write() method. The callback extension create an instance of the appropriate
OVM type. This is typically done by using an appropriate data conversion class (see 5.5).

5.10.5 Collaboration

A VMM transactor calls a callback method, providing a transaction descriptor as one or many of its
argument. An instance of the analysis port adapter callback extension is registered with the transactor and
gets invoked. The callback information is converted to the appropriate OVM type and published on the
analysis port by calling its write() method. The OVM subscriber at the other end obtains it through its
write() method.

5.10.6 Implementation

To implement the practice, the integrator creates a new extension of the VMM transactor callback facade
class, instantiates an analysis port of the appropriate type and implements the relevant virtual method.

The implementation of the callback method creates an instance of the appropriate OVM type, either through
explicit construction or via a data conversion method, then publishes the OVM data onto the analysis port
via its write() method.

The analysis port of the callback extension is then connected to the appropriate OVM analysis export of the
desired component(s).

5.10.7 Sample code

This illustrates how to implement this practice.

typedef avt_converter #(vmm_apb_tr, ovm_apb_tr) apb_rw_vmm2ovm;

class to_analysis_port extends apb_master_cbs;
analysis_port #(ovm_apb_rw) ap;

function new(ovm_component parent);
ap = new(“ap”, parent);

endfunction

vmm_xactor
ovm_subscriber

ovm_subscriber

ap_cb

cb

write()
Version 1.0 Verification Intellectual Property Recommended Practices 59

virtual task post_tr(apb_master xactor,
vmm_apb_rw tr);

ovm_apb_rw o_tr;
o_tr = apb_rw_vmm2ovm::convert(tr);
ap.write(o_tr);

endtask
endclass

a) To connect a VMM callback to multiple OVM recipients in an OVM container, use:

apb_master vmm_bfm;
my_apb_scoreboard ovm_sbd1, ovm_sbd2;
to_analysis_port v2o;
...
function void build();

vmm_bfm = new(“APB BFM”);
ovm_sbd1 = new(“sbd1”, this);
ovm_sbd2 = new(“sbd2”, this);
v2o = new(this);
vmm_bfm.append_callback(v2o);

endfunction

function void connect();
v2o.ap.connect(ovm_sbd1.analysis_export);
v2o.ap.connect(ovm_sbd2.analysis_export);

endfunction

b) To connect a VMM callback to multiple OVM recipients in a VMM environment container, use:

apb_master vmm_bfm;
my_apb_scoreboard ovm_sbd1, ovm_sbd2;
to_analysis_port v2o;

function new(string inst, virtual apb_if.passive sigs);
super.new(“VMM/OVM SubEnv”, inst);
vmm_bfm = new("APB BFM", sigs);
ovm_sbd1 = new("sbd1", ovm_root);
ovm_sbd2 = new(“sbd2”, ovm_root);
v2o = new(ovm_root);

v2o.ap.connect(ovm_sbd1.analysis_export);
v2o.ap.connect(ovm_sbd2.analysis_export);

endfunction

5.11 Sequence and scenario composition

5.11.1 Practice name

Sequential stimulus or Multi-stream sequences

5.11.1.1 Also known as

N/A.

5.11.1.2 Related practices

OVM-on-top phase synchronization (see 5.1) and VMM-on-top phase synchronization (see 5.2).
60 Verification Intellectual Property Recommended Practices Version 1.0

5.11.2 Intent

This practice shows how to execute VMM scenarios from OVM sequences and vice-versa.

5.11.2.1 Motivation

Stimulus often involves coordinating the operation of multiple transaction streams, often on multiple
interfaces. It is necessary to allow both OVM sequences to control VMM (multi-stream) scenarios and
VMM multi-stream scenarios to control OVM (virtual) sequences.

5.11.2.2 Consequences

None.

5.11.3 Applicability

This practice is used to implement a hierarchical OVM (virtual) sequence or VMM multi-stream scenario
that coordinates the execution of OVM sequences and/or VMM (multi-stream) scenarios.

NOTE—As mentioned in Chapter 4, it may be easier to add additional (OVM) sequences or (VMM) scenarios to an
existing VIP component using its native methodology rather than trying to emulate the behavior in the parent methodol-
ogy.

5.11.4 Structure

This practice uses methods that already exist in each base library. There are no new components or adapters
required to implement this practice.

5.11.5 Collaboration

The collaboration for this practice varies depending on which methodology is on top.

5.11.5.1 OVM-on-top

In the OVM-on-top case, proper coordination of VMM scenarios, which are instantiated in VMM scenario
generators, requires the integrator to ensure that the generator is not otherwise executing the scenario. This
may require an OVM sequence or the OVM environment to stop the VMM scenario generator by calling its
stop_xactor() method.

a) An OVM sequence can start a VMM single-stream scenario by calling the VMM scenario's
apply() method. The OVM ‘ovm_do* macros may not be used to execute VMM scenarios.

b) An OVM sequence can start a VMM multi-stream scenario by calling its execute() method. The
following steps shall be completed, by the existing VMM VIP or by the OVM container during the
build phase.

1) A VMM multi-stream scenario generator has to be instantiated.

2) The multi-stream scenarios to be started from an OVM sequence have to be instantiated and
registered with the (multi-stream scenario) generator.

3) The channels used by the multi-stream scenarios have to be registered with the generator.

The verification environment integrator shall ensure the required class handles for the respective VMM
components (e.g., VMM generators and possibly VMM scenarios, VMM multi-stream scenarios and VMM
channels) are accessible from the OVM sequences. These class handles should be initialized in the
connect() phase of the environment (avt_ovm_vmm_env [see 6.4]) to point to the VMM components
that need to be controlled by the OVM sequences. 5.11.5.2 illustrates how to accomplish this.
Version 1.0 Verification Intellectual Property Recommended Practices 61

5.11.5.2 VMM-on-top

In the VMM-on-top case, the guidelines specified in 5.2 should be followed to ensure the OVM components
are built and connected correctly. A VMM multi-stream scenario may execute an OVM sequence by calling
its start() method. The sequencer that runs this sequence is specified as an argument of the call to
start(). The VMM multi-stream scenario may not call the OVM ‘ovm_do* macros to invoke OVM
sequences. The verification environment integrator needs to ensure the sequencer handles are initialized to
point to the correct OVM sequencer(s); this initialization should be done during the build() phase, after
the multi-stream scenario has been created and the OVM component has been built. 5.11.7.2 shows the
sample code for this case.

In the VMM-on-top case, the following steps shall be completed by the existing OVM VIP or by the VMM
container during the build phase.

a) An OVM sequencer has to be instantiated.

b) The OVM sequencer shall be connected to the appropriate driver.

The verification environment integrator shall ensure the required class handles for the respective OVM
components (e.g., OVM sequencer(s) and possibly OVM sequences) are accessible from the VMM multi-
stream scenario generator. These class handles should be initialized in the build() phase of the
environment (avt_vmm_ovm_env [see 6.5]) to point to the OVM components that need to be controlled by
the VMM multi-stream scenarios. 5.11.7.2 illustrates how to accomplish this.

5.11.6 Implementation

See 5.11.7.

5.11.7 Sample code

This illustrates how to implement this practice.

5.11.7.1 OVM-on-top

This example shows how to perform the following operations from an OVM sequence.

— Grab/ungrab VMM channels to control the execution of VMM-generated transactions,

— Start the VMM scenarios, including multi-stream scenarios, and send the generated transactions to
the VMM drivers (via the VMM channels).

OVM (virtual) sequences are used to coordinate the operation of multiple transaction streams on multiple
interfaces. It is important that OVM sequences can coordinate the traffic generation of OVM components, as
well as VMM components.

The following example illustrates the OVM-on-top case. In this example, the OVM environment
ovm_vmm_tb consists of many OVM components and the following VMM components:

— Two APB drivers: vmmdriver0 and vmmdriver1

— Two VMM channels: apb_vmmch0 and apb_vmmch1

— A multi-stream scenario generator: vmmmss_gen0

— Some multi-stream scenarios: vmmmss1 and vmmmss2

— One APB scenario: apb_vmmscen1

To keep the sample code readable, only the details necessary to understand the integration of the VMM
components into an OVM verification environment are shown here. It is presumed the readers are familiar
62 Verification Intellectual Property Recommended Practices Version 1.0

with both the OVM and VMM libraries, and the recommended OVM verification component (OVC)
architecture described in the OVM User Guide ([B2]).

class ovm_vmm_seq extends ovm_sequence;
…

vmm_ms_scenario_gen vmmmss_gen
apb_scenario1 apb_vmmscen1;
apb_ovm_init_seq ovm_init_seq;
int unsigned num_items;
int mss_no_items;

virtual task body();

vmm_channel apb_vmmch0 = vmmmss_gen.get_channel(“ch0”);
vmm_ms_scenario vmmmss1 = vmmmss_gen.get_scenario(“vmmmss1”);

fork
begin

apb_vmm_ch0.grab(vmmmss1);
ovm_init_seq.start(sqr1);
…
apb_vmm_ch0.ungrab(vmmmss1);

end
begin

// start a VMM scenario
assert(apb_vmmscen1.randomzize() with {…});
apb_vmmscen1.apply(apb_vmmch0, num_items);
…
//Now, start a VMM multi-stream scenario
vmmmss1.execute(mss_no_items);

end
join
…

endtask : body
endclass

class ovm_vmm_tb extends ovm_env;
// OVM sequence

ovm_vmm_seq my_ovm_vmm_seq;
apb_ovm_init_seq ovm_init_seq;

//VMM components
apb_driver vmmdriver0, vmmdriver1;
apb_channel apb_vmmch0, apb_vmmch1;
apb_scenario1 apb_vmmscen1;
vmm_ms_scenario_gen vmmmss_gen0;
ms_scenario1 vmmmss1;
…
extern virtual function void build();
extern virtual function void connect();

endclass

function void ovm_vmm_tb::build();
//Allocate the VMM components
apb_vmmch0 = new("apb_vmmch0", apb_vmmch0);
vmmdriver0 = new("vmmdriver0", 0, top.apb_if0, apb_vmmch0);
…
vmmmss1 = new();
Version 1.0 Verification Intellectual Property Recommended Practices 63

apb_vmmscen1 = new();
// Assign handles in OVM sequence
ovm_init_seq = apb_ovm_init_seq::type_id::create(“init_seq”);
my_ovm_vmm_seq.ovm_init_seq = ovm_init_seq;
my_ovm_vmm_seq.apb_vmmscen1 = apb_vmmscen1;
//Multi-stream scenarios and channels registrations
vmmmss_gen0.register_channel("ch0", this.apb_vmmch0);
vmmmss_gen0.register_channel("ch1", this.apb_vmmch1);
vmmmss_gen0.register_ms_scenario("vmmmss1", vmmmss1);
vmmmss_gen0.register_ms_scenario("vmmmss2", vmmmss2);

 …
my_ovm_vmm_seq.vmmmss_gen = vmmmss_gen0;
vmmmss_gen0.stop_after_n_scenarios = 5;

 …
endfunction : build

function void ovm_vmm_tb::connect();
//Connections for remaining OVM components
…

endfunction : connect

5.11.7.2 VMM-on-top

In a VMM-on-top verification environment, VMM multi-stream scenarios are used to coordinate the
operation of multiple transaction streams on multiple interfaces. It is important that VMM multi-stream
scenarios can coordinate the traffic generation of VMM components, as well as OVM components,
including starting the OVM sequences and virtual sequences.

The following example illustrates the VMM-on-top case. In this example, the VMM environment
avt_ovm_vmm_env consists of many VMM components and an Ethernet OVC, which consists of OVM
subcomponents, such as: Ethernet agents, Ethernet sequencers, Ethernet drivers, etc.

To keep the sample code readable, only the details necessary to understand the integration of the Ethernet
OVC into the VMM verification environment and the code to start the OVM sequence from a multi-stream
scenario are shown here. It is presumed the readers are familiar with both the OVM and the VMM.

class my_vmm_ovm_env extends avt_vmm_ovm_env;
`ovm_build
apb_driver vmmdriver0, vmmdriver1;

 apb_channel apb_vmmch0, apb_vmmch1;
 vmm_ms_scenario_gen vmmmss_gen0;
 mss_ovm_sequence mss_ovm_sequence_1;// multi-stream scenario that

// calls OVM sequence

 ethernet_ovc ovm_ethernet_ovc;

 function new(string name="ovm_vmm_tb");
super.new(name);

 endfunction : new

extern function void build();
...

endclass

function void avt_ovm_vmm_env::build();
super.build();
…

64 Verification Intellectual Property Recommended Practices Version 1.0

//Multi-stream scenario allocation & mss registration
mss_gen0.register_channel("ch0",this.apb_vmmch0);
mss_gen0.register_channel("ch1",this.apb_vmmch1);
mss_ovm_sequence_1= new();
mss_gen0.register_ms_scenario("mss_ovm_sequence_1",

mss_ovm_sequence_1);
mss_gen0.stop_after_n_scenarios = 3;
// Instantiation other VMM components
….
//Build the OVM component
ovm_ethernet_ovc = new("ovm_ethernet_ovc");
ovm_build();
//Initialize the sequencer handle in multi-stream scenario
mss_ovm_sequence_1.ovm_seqr = ovm_ethernet_ovc.agent.sequencer;
// disable ovm_ethernet_ovc.agent.sequencer

endfunction : build

class mss_ovm_seq extends vmm_ms_scenario;
rand apb_txn txn;
ovm_sequencer#(ethernet_packet) ovm_seqr;//OVM sequencer handle,

//initialized in avt_ovm_vmm_env
ethernet_error_sequence ethernet_sequence_i; //ovm sequence to be executed

function new(vmm_scenario parent = null);

super.new(parent);
ethernet_sequence_i = new("ethernet_sequence_i");

endfunction : new

virtual task execute(ref int n);
…

fork
begin
//Start OVM sequence

ethernet_sequence_i.grab(ovm_seqr);
ethernet_sequence_i.start(ovm_seqr);
ethernet_sequence_i.ungrab(ovm_seqr);
…

end
begin

//start traffic on other VMM drivers
ch1.put(this.txn.copy());
…
ch0.put(this.txn.copy());
…

end
join

endtask : execute
endclass

5.12 Messaging

5.12.1 Practice name

Messaging
Version 1.0 Verification Intellectual Property Recommended Practices 65

5.12.1.1 Also known as

N/A.

5.12.1.2 Related practices

Used by OVM-on-top phase synchronization (see 5.1) and VMM-on-top phase synchronization (see 5.2).

5.12.2 Intent

All messages issued by OVM and VMM components should have a similar appearance and integrated
accounting. The maximum verbosity level to be displayed should be set globally and affect any messages
issued from OVM and VMM components.

5.12.2.1 Motivation

It is easier for users visually scanning messages or parsing message log files if all messages have a
consistent format.

Error messages issued from OVM or VMM components shall be combined for accounting purposes to
optionally stop the simulation after a user-defined number of errors has been reached. Similarly, a fatal error
message issued from an OVM or VMM component shall be globally accounted to abort the simulation.

5.12.2.2 Consequences

It is necessary to map the message types, severities, and verbosities between VMM and OVM. VMM uses
eleven message types and seven orthogonal severity levels. OVM uses four message severities and an
orthogonal 32-bit integer numeric verbosity value. Typically, only a subset of all possible combinations of
message types, severities, and verbosities is used.

Table 6 shows how typical VMM messages are mapped when they are converted into OVM messages.

Table 6—OVM-on-top message mapping

VMM OVM

Severity Type Severity Verbosity

FATAL_SEV FAILURE_TYP OVM_FATAL OVM_NONE

other OVM_INFO

ERROR_SEV FAILURE_TYP OVM_ERROR OVM_LOW

other OVM_INFO

WARNING_SEV FAILURE_TYP OVM_WARNING OVM_MEDIUM

other OVM_INFO

NORMAL_SEV any OVM_INFO OVM_MEDIUM

TRACE_SEV any OVM_HIGH

DEBUG_SEV any OVM_FULL

VERBOSE_SEV any OVM_DEBUG
66 Verification Intellectual Property Recommended Practices Version 1.0

Table 7 shows how typical OVM messages are mapped when they are converted into VMM messages.

Because messages are still issued using their respective native message interface and are funneled to the top-
level message reporting service behind-the-scenes, any filtering that occurs in the source methodology is
still applied first. Therefore, messages issued in the foreign methodology are subject to the sum of the filters
in both methodologies. To avoid over-filtering foreign messages, the message adapter in the host
methodology does not perform (by default) any filtering on foreign messages.

5.12.3 Applicability

This practice is used whenever mixed environments are created. In a VMM-on-top situation, messages are
formatted and counted by the VMM Message Service. In an OVM-on-top situation, messages are formatted
and counted by the OVM Global Report Server.

5.12.4 Structure

The messages issued in any of the foreign message report interfaces are captured by a single message
adapter in the host methodology, as illustrated in Figure 21.

Table 7—VMM-on-top message mapping

OVM VMM

Severity Verbosity Type Severity

OVM_WARNING any FAILURE_TYP WARNING_SEV

OVM_ERROR FAILURE_TYP ERROR_SEV

OVM_FATAL FAILURE_TYP FATAL_SEV

OVM_INFO <= OVM_NONE NOTE_TYP ERROR_SEV

<= OVM_LOW WARNING_SEV

<= OVM_MEDIUM NORMAL_SEV

<= OVM_HIGH TRACE_SEV

<= OVM_FULL DEBUG_SEV

<= OVM_DEBUG VERBOSE_SEV
Version 1.0 Verification Intellectual Property Recommended Practices 67

Figure 21—Message interoperability dataflow

5.12.4.1 Class diagram

There are no user-visible classes specific to messaging interoperability.

5.12.4.2 Declaration prototype

There are no user-visible APIs specific to messaging interoperability.

5.12.4.3 Participants

None.

5.12.5 Collaboration

None.

5.12.6 Implementation

To ensure messages are integrated before being issued by the foreign methodology, the user shall specify
which methodology to use for messaging by setting the OVM_ON_TOP or VMM_ON_TOP compiler directive,
via the command line. Only one of these directives shall be defined.

5.12.7 Sample code

These examples shows how messages issued from OVM and VMM components in an arbitrary hierarchy
can be globally or individually controlled. It is necessary to incorporate these code examples in larger self-
running examples to see how the messages are formatted and accounted by the host methodology.

5.12.7.1 OVM-on-top

ovm_top.set_report_max_quit_count(15);

// Increase verbosity on the VMM leaf on the 2nd set
#10;
env.ovm.leaf.log.set_verbosity(vmm_log::VERBOSE_SEV);

// Increase verbosity on the OVM leaf on the 3rd set
// And turn down the VMM leaf and middle to a trickle

vmm_log vmm_log vmm_log

VMM Formatter

OVM Global Report Server

ovm_report_handler

vmm_log

OVM Global Report Server

(a) OVM-on-top (b) VMM-on-top

ovm_report_handler
68 Verification Intellectual Property Recommended Practices Version 1.0

#10;
env.vmm.leaf.set_report_verbosity_level(OVM_DEBUG);
env.ovm.leaf.log.set_verbosity(vmm_log::ERROR_SEV);

// Globally turn off OVM messages and crank up the VMM ones
// (which should turn off everything because VMM messages
// are routed through OVM).
#10;
env.vmm.log.set_verbosity(vmm_log::VERBOSE_SEV, "/./", "/./");
ovm_top.set_report_verbosity_level_hier(OVM_LOW);

Simulation output

OVM_INFO ovm_leaf.sv(40) @ 26: vmm.leaf [ovm_leaf] High-Info message from
vmm.leaf

OVM_INFO ovm_leaf.sv(42) @ 26: vmm.leaf [ovm_leaf] Info message from vmm.leaf
OVM_WARNING ovm_leaf.sv(44) @ 26: vmm.leaf [ovm_leaf] Warning message from

vmm.leaf
OVM_ERROR ovm_leaf.sv(46) @ 26: vmm.leaf [ovm_leaf] Error message from vmm.leaf
==

OVM_ERROR ovm_mid.sv(58) @ 31: ovm [ovm_mid] Error message from ovm
OVM_ERROR @ 32: VMM Leaf [ovm.leaf] Error message from ovm.leaf
OVM_ERROR @ 35: VMM Mid [vmm] Error message from vmm

--- OVM Report Summary ---

Quit count reached!
Quit count : 15 of 15
** Report counts by severity

OVM_INFO : 92
OVM_WARNING : 11
OVM_ERROR : 15
OVM_FATAL : 0
** Report counts by id
[COMPPH] 40
[ENDPH] 9
[RNTST] 1
[STARTPH] 10
[ovm.leaf] 11
[ovm_leaf] 18
[ovm_mid] 19
[vmm] 10

5.12.7.2 VMM-on-top

env.log.stop_after_n_errors(15);

// Increase verbosity on the OVM leaf on the 2nd set
#10;
env.vmm.leaf.set_report_verbosity_level(OVM_FULL);

// Increase verbosity on the VMM leaf on the 3rd set
// And turn down the OVM leaf and middle to a trickle
#10;
env.ovm.leaf.log.set_verbosity(vmm_log::VERBOSE_SEV);
Version 1.0 Verification Intellectual Property Recommended Practices 69

env.vmm.leaf.set_report_verbosity_level(OVM_LOW);
env.ovm.set_report_verbosity_level(OVM_LOW);

// Globally turn off VMM messages and crank up the OVM ones
// (which should turn off everything because OVM messages
// are routed through VMM).
#10;
ovm_top.set_report_verbosity_level(OVM_DEBUG);
env.log.set_verbosity(vmm_log::ERROR_SEV, "/./", "/./");

Simulation output

Normal[NOTE] on VMM Mid(vmm) at 25:
 Note message from vmm
WARNING[FAILURE] on VMM Mid(vmm) at 25:
 Warning message from vmm
!ERROR![FAILURE] on VMM Mid(vmm) at 25:
 Error message from vmm
!ERROR![FAILURE] on OVM(reporter) at 26:
 vmm.leaf(ovm_leaf): Error message from vmm.leaf
==

!ERROR![FAILURE] on OVM(reporter) at 31:
 ovm(ovm_mid): Error message from ovm
!ERROR![FAILURE] on VMM Leaf(ovm.leaf) at 32:
 Error message from ovm.leaf
!ERROR![FAILURE] on VMM Mid(vmm) at 35:
 Error message from vmm
Maximum number of error messages exceeded. Aborting
Use method stop_after_n_errors() of vmm_log to increase threshold.
Simulation *FAILED* on /./ (/./) at 35: 15 errors, 10 warnings
70 Verification Intellectual Property Recommended Practices Version 1.0

6. Application programming interface (API)

This chapter defines the application programming interface (API) for each of the VIP classes. Each API is
based on the SystemVerilog syntax of IEEE Std 1800™.

6.1 Common parameters

Many of the VIP classes contain some or all of the following parameters as part of their APIs.

6.1.1 OVM

The OVM transaction type; this needs to be an extension of ovm_transaction or
ovm_sequence_item.

6.1.2 OVM_REQ

The OVM request transaction type for a bidirectional request/response communication component, such as
avt_tlm2channel (see 6.6); this needs to be an extension of ovm_transaction or
ovm_sequence_item.

6.1.3 OVM_RSP

The OVM response transaction type for a bidirectional request/response communication component, such as
avt_tlm2channel (see 6.6); this needs to be an extension of ovm_transaction or
ovm_sequence_item.

6.1.4 VMM

The VMM transaction type; this needs to be an extension of vmm_data.

6.1.5 VMM_REQ

The VMM request transaction type for a bidirectional request/response communication component, such as
avt_tlm2channel (see 6.6); this needs to be an extension of vmm_data.

6.1.6 VMM_RSP

The VMM response transaction type for a bidirectional request/response communication component, such
as avt_tlm2channel (see 6.6); this needs to be an extension of vmm_data.

6.1.7 OVM2VMM

The converter class to go from OVM to VMM. The converter class shall implement a single static method
having the following prototype:

static function VMM convert(OVM in, VMM to=null);

If the to argument is provided, the OVM transaction contents are copied into the existing to VMM
transaction. Otherwise, a new VMM transaction is allocated, copied into, and returned. See also 6.2.

6.1.8 OVM2VMM_REQ

The converter class (see 6.1.7) used to convert request transaction descriptors from OVM to VMM.
Version 1.0 Verification Intellectual Property Recommended Practices 71

6.1.9 OVM2VMM_RSP

The converter class (see 6.1.7) used to convert response transaction descriptors from OVM to VMM.

6.1.10 VMM2OVM

The converter class to go from VMM to OVM. The converter class shall implement a single static method
having the following prototype:

static function OVM convert(VMM in, OVM to=null);

If the to argument is provided, the VMM transaction contents are copied into the existing to OVM
transaction. Otherwise, a new OVM transaction is allocated, copied into, and returned. See also 6.2.

6.1.11 VMM2OVM_REQ

The converter class (see 6.1.10) used to convert request transaction descriptors from VMM to OVM.

6.1.12 VMM2OVM_RSP

The converter class (see 6.1.10) used to convert response transaction descriptors from VMM to OVM.

6.2 avt_converter #(IN,OUT)

This pass-though converter simply returns the input transaction of type IN as a return value of type OUT.
avt_converter has the following declaration, parameters, and methods.

NOTE—Typically users create their own converter (see 5.5).

6.2.1 Declaration

This class is declared as follows.

class avt_converter #(type IN = int,
OUT = IN);

6.2.2 Parameters

This class contains the following parameters.

6.2.2.1 IN

This is the input type, which can be any user-defined class.

6.2.2.2 OUT

This the output type, which needs to be assignment-compatible with the input type (see 6.2.2.1).

6.2.3 Methods

This class contains the following method.

static function OUT convert(IN in,
OUT to = null);
72 Verification Intellectual Property Recommended Practices Version 1.0

This returns the input argument of type IN as type OUT, which shall be assignment-compatible with type
IN (see 6.2.2.1). For class types, this means OUT shall be the same type as IN or a super-class of IN.

The to argument allows the conversion to copy into an existing object and avoid the expense of allocation.

If to is null (the default), the convert method shall create a new instance of OUT, copy the fields of in to it,
and return it. If the to argument is non-null, the convert method should copy the fields of in to the
corresponding fields of to and then return to.

6.3 avt_match_ovm_id

This simple comparator class provides a default implementation of the static match() method used by the
avt_channel2tlm (see 6.7) adapter class.

6.3.1 Declaration

This class is declared as follows.

class avt_match_ovm_id;

6.3.2 Parameters

This class is not parameterized.

6.3.3 Methods

This class contains the following method.

static function bit match(ovm_sequence_item req,

ovm_sequence_item rsp);

return req.get_sequence_id() == rsp.get_sequence_id() &&

req.get_transaction_id() == rsp.get_transaction_id();

endfunction

This method returns a 1 if both the sequence_id and transaction_id members of the req
transaction descriptor match the specified rsp transaction descriptor. Otherwise, it returns 0.

6.4 avt_ovm_vmm_env

This class is an ovm_component that automatically creates the vmm_env class during construction.
avt_ovm_vmm_env has the following hierarchy, declaration, methods, and variables.

6.4.1 Hierarchy

This class has the hierarchy shown in Figure 22.
Version 1.0 Verification Intellectual Property Recommended Practices 73

Figure 22—avt_ovm_vmm_env

6.4.2 Declaration

This class is declared as follows.

class avt_ovm_vmm_env #(type ENV=vmm_env) extends avt_ovm_vmm_env_base;

class avt_ovm_vmm_env_named #(type ENV=vmm_env) extends avt_ovm_vmm_env_base;

The avt_ovm_vmm_env_named derived class is used when the instantiated vmm_env uses a name
argument in its constructor.

6.4.3 Methods

This class contains the following methods.

6.4.3.1 new

function new (string name,
ovm_component parent = null,
vmm_env env = null)

This creates a vmm_env container component with the given name and parent. A new instance of a
vmm_env of type ENV is created if one is not provided in the env argument. The environment is not
named. In the avt_ovm_vmm_env_named derived class, the arguments are the same, but if the
environment is provided, its name value is set to {parent.get_full_name(),"."},name}.

6.4.3.2 vmm_gen_cfg

virtual function void gen_cfg()

ENV

ovm_component

avt_ovm_vmm_env_base

1
avt_ovm_vmm_env

ENV=vmm_env

ENV
1

avt_ovm_vmm_env_named

ENV=vmm_env
74 Verification Intellectual Property Recommended Practices Version 1.0

Calls the underlying VMM environment’s gen_cfg() method. The user may extend vmm_gen_cfg to
add additional functionality. In this case, the user calls super.vmm_gen_cfg() to execute the
underlying environment’s gen_cfg() method.

6.4.3.3 build

virtual function void build()

Calls the underlying VMM environment’s build method. The user may extend build to add additional
functionality. In this case, the user calls super.build() to execute the underlying environment’s
build() method.

6.4.3.4 vmm_reset_dut

virtual task reset_dut()

Calls the underlying VMM environment’s reset_dut method, followed by the
ovm_top.stop_request() method. The user may extend reset_dut to add additional functionality. In
this case, the user calls super.reset_dut() to execute the underlying environment’s reset_dut()
method.

6.4.3.5 vmm_cfg_dut

virtual task vmm_cfg_dut()

Calls the underlying VMM environment’s cfg_dut method followed by the
ovm_top.stop_request() method. The user may extend cfg_dut to add additional functionality. In
this case, the user calls super.cfg_dut() to execute the underlying environment’s cfg_dut()
method.

6.4.3.6 run

task avt_ovm_vmm_env::run()

Calls the underlying VMM environment’s reset_dut, cfg_dut, start, and wait_for_end
methods, returning when the environment’s end-of-test condition has been reached. Extensions of this
method may augment or remove certain end-of-test conditions from the underlying environment’s
consensus object before calling super.run(). When super.run() returns, extensions may choose to
call ovm_top.stop_request() if the underlying environment is the only governor of end-of-test.
Extensions may completely override this base implementation by not calling super.run. In such cases, all
four VMM phases shall still be executed explicitly by the user in the prescribed order.

If auto_stop_request is set (see 6.4.4.2), OVM’s stop_request() is called to end the run phase.

6.4.3.7 stop

virtual task stop (string ph_name)

When called during the OVM run phase, this task waits for the underlying environment’s
wait_for_end phase to return, then calls the VMM environment’s stop and cleanup tasks. When the
ok_to_stop variable (see 6.4.4.1) is set at the time stop is called, stop does not wait for wait_for_end
to return. This allows OVM components to control when the VMM environment and its embedded
xactors are stopped.
Version 1.0 Verification Intellectual Property Recommended Practices 75

6.4.3.8 vmm_report

virtual task vmm_report()

Calls the underlying VMM environment’s report method, then stops the report_vmm phase. This phase is
called after OVM’s report phase has completed. The user may extend vmm_report to add additional
functionality. In this case, the user calls super.vmm_report() to execute the underlying environment’s
vmm_report() method.

6.4.4 Variables

This class contains the following variables.

6.4.4.1 ok_to_stop

bit ok_to_stop = 0

When ok_to_stop is clear (default), the avt_ovm_vmm_env’s stop task waits for the VMM
environment’s wait_for_end task to return before continuing. This bit is automatically set with the
underlying VMM environment’s wait_for_end task returns, which allows the stop task to call the VMM
environment’s stop and cleanup phases.

If ok_to_stop is set manually, other OVM components may terminate the run phase before the VMM
environment has returned from wait_for_end.

6.4.4.2 auto_stop_request

bit auto_stop_request = 0

When set, this bit enables calling an OVM stop_request after the VMM environment’s
wait_for_end task returns, thus ending OVM’s run phase coincident with VMM’s wait_for_end.
The default is 0.

Now, a wrapped VMM environment is a subcomponent of a larger-scale OVM environment (that may
incorporate multiple wrapped VMM environments). A VMM environment’s end-of-test condition is no
longer sufficient for determining the overall end-of-test condition. Thus, the default value for
auto_stop_request is 0. Parent components of the VMM environment wrapper may choose to wait on the
posedge of ok_to_stop (see 6.4.4.1) to indicate the VMM environment has reached its end-of-test condition.

6.5 avt_vmm_ovm_env

This class is used to automatically integrate OVM phasing with VMM phasing in a VMM-on-top
environment. avt_vmm_ovm_env has the following hierarchy, declaration, methods, and macros.

6.5.1 Hierarchy

This class has the hierarchy shown in Figure 23.
76 Verification Intellectual Property Recommended Practices Version 1.0

Figure 23—avt_vmm_ovm_env

By default, the AVT_VMM_OVM_ENV_BASE compiler variable is set to vmm_env.

6.5.2 Declaration

This class is declared as follows.

class avt_vmm_ovm_env extends `AVT_VMM_OVM_ENV_BASE;

6.5.3 Methods

This class contains the following methods.

6.5.3.1 new

function new(string name = "Verif Env"

`VMM_ENV_BASE_NEW_EXTERN_ARGS);

This creates a new instance of avt_vmm_ovm_env.

6.5.3.2 ovm_build

virtual function void ovm_build()

This calls into the OVM’s phasing mechanism to complete OVM’s build, connect, and any other user-
defined phases up to end_of_elaboration.

6.5.3.3 reset_dut

virtual task reset_dut()

This synchronizes the start of VMM reset_dut with the start of OVM run phase, then forks the OVM
run phase to run in parallel with reset_dut, config_dut, start, and wait_for_end.

6.5.3.4 stop

virtual task stop ()

This requests the OVM run phase to stop if it is still running, then waits for the OVM run phase to finish.

‘AVT_VMM_OVM_ENV_BASE

avt_vmm_ovm_env
Version 1.0 Verification Intellectual Property Recommended Practices 77

6.5.3.5 report

virtual task report()

This calls into the OVM’s phasing mechanism to execute user-defined OVM phases inserted after
report_ph, if any.

6.5.4 Macros

This class contains the following macro.

`ovm_build

This declares the ovm_build() method, which calls into the OVM’s phasing mechanism to complete
OVM’s build, connect, and any other user-defined phases up to end_of_elaboration. This macro
must be specified in every extension of avt_vmm_ovm_env to ensure that ovm_build() is only executed
once.

6.6 avt_tlm2channel

Use this class to connect an OVM producer to a VMM consumer via a vmm_channel. Consumers can
implement many different response-delivery models. See also 5.6.

6.6.1 Hierarchy

The inheritance hierarchy of the avt_tlm2channel class is shown in Figure 24.

Figure 24—avt_tlm2channel

6.6.2 Declaration

This class is declared as follows.

class avt_tlm2channel #(type OVM_REQ = int,
 VMM_REQ = int,
 OVM2VMM_REQ = int,
 VMM_RSP = VMM_REQ,
 OVM_RSP = OVM_REQ,
 VMM2OVM_RSP = avt_converter #(VMM_RSP,OVM_RSP))
 extends ovm_component;

vmm_channel

ovm_component

avt_tlm2channel

1..2

OVM_REQ = int,
VMM_REQ = int,
OVM2VMM_REQ = int,
VMM_RSP = VMM_REQ,
OVM_RSP = OVM_REQ,
VMM2OVM_RSP = avt_converter #(VMM_RSP, OVM_RSP)
78 Verification Intellectual Property Recommended Practices Version 1.0

6.6.3 Parameters

This class contains the following parameters (see 6.1).

— OVM_REQ

— VMM_REQ

— OVM2VMM_REQ

— VMM_RSP

— OVM_RSP

— VMM2OVM_RSP

6.6.4 Communication interfaces

The avt_tlm2channel communication adapter includes both OVM and VMM communication interfaces.

The OVM interfaces are implemented as TLM ports or exports.

a) seq_item_port This bidirectional port is used to connect to an ovm_sequencer or any other
component providing an ovm_seq_item_export.

b) put_export This export is used to receive transactions from an OVM producer that utilizes a
blocking or non-blocking put interface.

c) master_export This bidirectional export is used to receive requests from and deliver responses
to an OVM producer that utilizes a blocking or non-blocking master interface.

d) blocking_transport_export This bidirectional export is used to receive requests from and
deliver responses to an OVM producer that utilizes a blocking transport interface.

e) blocking_get_peek_port This unidirectional port is used to retrieve responses from a pas-
sive OVM producer with a blocking get_peek export.

f) blocking_put_port This port is used to deliver responses to an OVM producer that expects
responses from a blocking put interface.

g) blocking_slave_port This bidirectional port is used to request transactions from and deliver
responses to a passive OVM producer utilizing a blocking slave interface.

h) request_ap All transaction requests received from any of the interface ports and exports in this
adapter are broadcast out this analysis port to any OVM subscribers.

i) response_ap All transaction responses received from any of the interface ports and exports in
this adapter are broadcast out this analysis port to any OVM subscribers.

The VMM interfaces are implemented via built-in vmm_channel objects.

j) req_chan Handle to the request vmm_channel_typed #(VMM_REQ) instance being adapted.

k) rsp_chan Handle to the optional response vmm_channel_typed #(VMM_RSP) instance
being adapted.

6.6.5 Methods

The only user-accessible method of the avt_tlm2channel component is the constructor. All TLM and
vmm_channel communication methods shall be called via the appropriate TLM port or vmm_channel
reference, respectively. This class contains the following method.

function new(string name="avt_tlm2channel",
ovm_component parent=null,
vmm_channel_typed #(VMM_REQ) req_chan=null,
bit wait_for_req_ended=0);
Version 1.0 Verification Intellectual Property Recommended Practices 79

This creates a new instance of avt_tlm2channel. If the vmm_channel arguments are not supplied, they
are created internally.

6.6.6 Variables

This class contains the following variables.

6.6.6.1 wait_for_req_ended

protected bit wait_for_req_ended = 0;

When the VMM consumer does not use a separate response channel, this bit specifies whether the response,
which is annotated into the original request, is available after a get from the request channel
(wait_for_req_ended=0) or after the original request’s ENDED status is indicated
(wait_for_req_ended=1).

This bit may be specified via a constructor argument and/or by using a set_config_int() call targeting
the desired component, using wait_for_req_ended as the second argument to specify the variable to be set.

6.6.6.2 request_timeout

time request_timeout = 100us;

When wait_for_req_ended is set (see 6.6.6.1), this specifies the time-out value to wait for the response
before a warning is issued.

6.7 avt_channel2tlm

Use this class to connect a VMM producer to an OVM consumer. Consumers can implement many different
response-delivery models. See also 5.7.

6.7.1 Hierarchy

The inheritance hierarchy of the avt_channel2tlm class is shown in Figure 25.

Figure 25—avt_channel2tlm

vmm_channel

ovm_component

avt_channel2tlm

1..2

VMM_REQ = int,
OVM_REQ = int,
VMM2OVM_REQ = int,
OVM_RSP = OVM_REQ,
VMM_RSP = VMM_REQ,
OVM2VMM_RSP = avt_converter #(OVM_RSP, VMM_RSP),
OVM_MATCH_REQ_RSP = avt_match_ovm_id
80 Verification Intellectual Property Recommended Practices Version 1.0

6.7.2 Declaration

This class is declared as follows.

class avt_channel2tlm #(type VMM_REQ = int,
 OVM_REQ = int,
 VMM2OVM_REQ = int,
 OVM_RSP = OVM_REQ,
 VMM_RSP = VMM_REQ,
 OVM2VMM_RSP = avt_converter #(OVM_RSP,VMM_RSP),
 OVM_MATCH_REQ_RSP=avt_match_ovm_id)
 extends ovm_component;

6.7.3 Parameters

This class contains the following parameters (see 6.1).

— VMM_REQ

— OVM_REQ

— VMM2OVM_REQ

— OVM_RSP

— VMM_RSP

— OVM2VMM_RSP

— OVM_MATCH_REQ_RSP

The comparator class to compare the OVM req transaction descriptor to the OVM rsp. The comparator
class shall implement a single static method having the following prototype:

static function bit match(ovm_sequence_item req,
ovm_sequence_item rsp);

The method shall return 1 if the two transaction descriptors are deemed to match, otherwise it shall return 0.
See also 6.3.

6.7.4 Communication interfaces

The avt_channel2tlm communication adapter includes both OVM and VMM communication interfaces.

The OVM interfaces are implemented as TLM ports and exports.

a) seq_item_export Used by OVM driver consumers using the sequencer interface to process
transactions.

b) get_peek_export For OVM consumers getting requests via peek/get.

c) response_export For OVM consumers returning responses via analysis write.

d) put_export For OVM consumers returning responses via blocking put.

e) slave_export For sending requests to passive OVM consumers via blocking put.

f) blocking_put_port For sending requests to passive OVM consumers via blocking put.

g) blocking_transport_port For atomic execution with passive OVM consumers via blocking
transport.

h) blocking_slave_port For driving passive OVM consumers via blocking slave interface.
Version 1.0 Verification Intellectual Property Recommended Practices 81

i) request_ap All requests are broadcast out this analysis port after successful extraction from the
request vmm_channel.

j) response_ap All responses sent to the response channel are broadcast out this analysis port.

The VMM interfaces are implemented via built-in vmm_channel objects.

k) req_chan Handle to the request vmm_channel_typed #(VMM_REQ) instance being adapted.

l) rsp_chan Handle to the optional response vmm_channel_typed #(VMM_RSP) instance
being adapted.

6.7.5 Methods

The only user-accessible method of the avt_channel2tlm component is the constructor. All TLM and
vmm_channel communication methods shall be called via the appropriate TLM port or vmm_channel
reference, respectively.

This class also contains the following method.

function new (string name="avt_channel2tlm",
ovm_component parent=null,
vmm_channel_typed #(VMM_REQ) req_chan=null,
vmm_channel_typed #(VMM_RSP) rsp_chan=null,
bit rsp_is_req=1,
int unsigned max_pending_req=100);

This creates a new instance of avt_channel2tlm. If either of the req_chan or rsp_chan arguments are
not supplied, they are created internally. The rsp_is_req and max_pending_req arguments are used
optionally to set values for important user-visible variables (see 6.7.6.1 and 6.7.6.2, respectively).

6.7.6 Variables

This class contains the following variables.

6.7.6.1 rsp_is_req

protected bit rsp_is_req = 1;

This indicates whether a response is the same object as the request with the status and/or read data filled in.
When set, and the rsp_chan is null, the request process, after returning from a put to the request channel,
copies the VMM request into the original OVM request object and sends it as the OVM response to the
seq_item_port’s put method.

In certain vmm_channel/driver completion models, the channel’s full level is 1 and the connected
driver does not consume the transaction until it has been fully executed. In this mode, the driver peeks the
transaction from the channel, executes it, fills in the response in fields of the same request object, then
finally pops (gets) the transaction off the channel. This then frees the put process, which was waiting for the
transaction to leave the channel.

This variable can be specified in a constructor argument (see 6.7.5) and/or by using a
set_config_int() call targeting the desired component, using rsp_is_req as the second argument to
specify the variable to be set.

6.7.6.2 max_pending_requests

int unsigned max_pending_req = 100;
82 Verification Intellectual Property Recommended Practices Version 1.0

This specifies the maximum number of requests that can be outstanding. The adapter holds all outgoing
requests in a queue for later matching with incoming responses. A maximum exists to prevent this queue
from growing too large.

This variable can be specified in a constructor argument (see 6.7.5) and/or by using a
set_config_int() call targeting the desired component, using max_pending_requests as the second
argument to specify the variable to be set.

6.8 avt_analysis_channel

Use this class to connect any OVM component with an analysis port or export to any VMM component via
a vmm_channel.

6.8.1 Hierarchy

This class has the hierarchy shown in Figure 26.

Figure 26—avt_analysis_channel

6.8.2 Declaration

This class is declared as follows.

class avt_analysis_channel #(type OVM = int, VMM = int,

OVM2VMM = avt_converter #(OVM,VMM),

VMM2OVM = avt_converter #(VMM,OVM))

extends ovm_component;

6.8.3 Parameters

This class contains the following parameters (see 6.1).

— OVM

— VMM

— OVM2VMM

— VMM2OVM

ovm_component

avt_analysis_channel

OVM = int,
VMM = int,
OVM2VMM = avt_converter #(OVM,VMM),
VMM2OVM = avt_converter #(VMM,OVM)
Version 1.0 Verification Intellectual Property Recommended Practices 83

6.8.4 Communication interfaces

The avt_analysis_channel communication adapter includes both OVM and VMM communication
interfaces.

The OVM interfaces are implemented as TLM ports and exports.

a) analysis_port VMM transactions received from the channel are converted to OVM transac-
tions and broadcast out this analysis port.

b) analysis_export The adapter may receive OVM transactions via this analysis export.

The VMM interfaces are implemented via built-in vmm_channel objects.

c) chan Handle to the request vmm_channel_typed #(VMM) instance being adapted.

6.8.5 Methods

The only user-accessible method of the avt_analysis_channel component is the constructor.

This class also contains the following method.

function new (string name, ovm_component parent=null,

vmm_channel_typed #(VMM) chan=null);

This creates a new avt_analysis_channel with the given name and optional parent; the optional chan
argument provides the handle to the vmm_channel being adapted. If no channel is given, the adapter
creates one.

6.9 avt_analysis2notify

The avt_analysis2notify adapter receives OVM data from its analysis_export, converts it to VMM,
then indicates the configured event notification, passing the converted data as vmm_data-based status.
VMM components that have registered a callback for the notification receive the converted data.

6.9.1 Hierarchy

The inheritance hierarchy of the avt_analysis2notify class is shown in Figure 27.

Figure 27—avt_analysis2notify

ovm_component

avt_analysis2notify

OVM = int,
VMM = int,
OVM2VMM = int
84 Verification Intellectual Property Recommended Practices Version 1.0

6.9.2 Declaration

This class is declared as follows.

class avt_analysis2notify #(type OVM=int,
VMM=int,
OVM2VMM=int) extends ovm_component;

6.9.3 Parameters

This class contains the following parameters (see 6.1).

— OVM

— VMM

— OVM2VMM

6.9.4 Communication interfaces

The avt_analysis2notify adapter includes both OVM and VMM communication interfaces.

The OVM interface is implemented as a TLM analysis_export. OVM transactions written to this
export is converted to VMM and embedded in the built-in notify object that gets indicated by the adapter.

6.9.5 Methods

The only user-accessible method of the avt_analysis2notify component is the constructor.

This class also contains the following method.

function new(string name,
ovm_component parent=null,
vmm_notify notify=null,
int notification_id=-1);

This creates a new analysis-to-notify adapter with the given name and optional parent; the notify and
notification_id together specify the notification event this adapter notes upon receipt of a transaction
on its analysis_export.

If the notify handle is not supplied or null, the adapter creates one and assigns it to the notify property.
If the notification_id is not provided, the adapter configures a ONE_SHOT notification and assigns it
to the RECEIVED property.

6.9.6 Variables

This class contains the following variables.

6.9.6.1 notify

vmm_notify notify;

This is the notify object this adapter uses to indicate the RECEIVED event notification (see 6.9.6.2).

6.9.6.2 RECEIVED

int RECEIVED;
Version 1.0 Verification Intellectual Property Recommended Practices 85

This is the notification id this adapter notes upon receipt of OVM data from its analysis_export.

6.10 avt_notify2analysis

The avt_notify2analysis adapter receives an indication from VMM, converts the data to OVM, then
publishes the data to its analysis_port.

6.10.1 Hierarchy

The inheritance hierarchy of the avt_notify2analysis class is shown in Figure 28.

Figure 28—avt_notify2analysis

6.10.2 Declaration

This class is declared as follows.

class avt_notify2analysis #(type VMM=int,

OVM=int,

VMM2OVM=int)

extends ovm_component;

6.10.3 Parameters

This class contains the following parameters (see 6.1).

— OVM

— VMM

— VMM2OVM

6.10.4 Communication interfaces

The avt_notify2analysis adapter includes both OVM and VMM communication interfaces.

The OVM interface is implemented as a TLM analysis_port. When the notify is indicated, the adapter
converts the indicated VMM transaction to the appropriate OVM transaction and then publishes the OVM
transaction via the analysis_port’s write() method.

ovm_component

avt_notify2analysis

OVM = int,
VMM = int,
VMM2OVM = int
86 Verification Intellectual Property Recommended Practices Version 1.0

6.10.5 Methods

The only user-accessible method of the avt_notify2analysis component is the constructor.

This class also contains the following method.

function new(string name,
ovm_component parent=null,
vmm_notify notify=null,
int notification_id=-1);

This creates a new notify-to-analysis adapter with the given name and optional parent; the notify and
notification_id together specify the notification event this adapter notes upon receipt of a transaction
on its analysis_export.

If the notify handle is not supplied or null, the adapter creates one and assigns it to the notify property.
If the notification_id is not provided, the adapter configures a ONE_SHOT notification and assigns it
to the RECEIVED property.

6.10.6 Variables

This class contains the following variables.

6.10.6.1 notify

vmm_notify notify;

This is the notify object this adapter uses to listen to the RECEIVED event notification (see 6.10.6.2).

6.10.6.2 RECEIVED

int RECEIVED;

This is the notification id this adapter listens to for receipt of VMM data from its status of the
notification.
Version 1.0 Verification Intellectual Property Recommended Practices 87

88 Verification Intellectual Property Recommended Practices Version 1.0

Appendix A

(informative)

Bibliography

[B1] Open SystemC Initiative (OSCI), Transaction Level Modeling (TLM) Library, Release 1.0.

[B2] OVM User Guide (part of the following Internet location: http://www.ovmworld.org).

[B3] For a summary of OVM, see the following Internet location: http://www.ovmworld.org.

[B4] For a summary of VMM, see the following Internet location: http://www.vmmcentral.org.
Version 1.0 Verification Intellectual Property Recommended Practices 89

90 Verification Intellectual Property Recommended Practices Version 1.0

	1. Overview
	1.1 Purpose
	1.2 Scope
	1.3 Recommended practices template
	1.4 Conventional notations
	1.5 Contents of this document

	2. Normative references
	3. Definitions, acronyms, and abbreviations
	3.1 Definitions
	3.2 Acronyms and abbreviations

	4. Integrating verification components
	4.1 Motivation
	4.2 Interoperability vs. migration
	4.3 Integrating mixed methodologies
	4.4 Learning OVM and VMM
	4.5 Reusing infrastructure
	4.5.1 Choosing the level of reuse
	4.5.2 Grouping the foreign component(s) and adapters into a container

	4.6 Instantiating the foreign component(s) in a testbench
	4.6.1 Instantiating and connecting components
	4.6.2 Configuring testbenches

	4.7 Creating reusable sequences/scenarios
	4.7.1 Creating sequences/scenarios for a single stream
	4.7.2 Developing system-level multi-channel sequences (multi-stream scenarios)

	4.8 Writing tests
	4.9 Running simulations, debugging them, and tracing any messages

	5. Recommended practices
	5.1 OVM-on-top phase synchronization
	5.1.1 Practice name
	5.1.2 Intent
	5.1.3 Applicability
	5.1.4 Structure
	5.1.5 Collaboration
	5.1.6 Implementation
	5.1.7 Sample code

	5.2 VMM-on-top phase synchronization
	5.2.1 Practice name
	5.2.2 Intent
	5.2.3 Applicability
	5.2.4 Structure
	5.2.5 Collaboration
	5.2.6 Implementation
	5.2.7 Sample code

	5.3 Meta-composition
	5.3.1 Practice name
	5.3.2 Intent
	5.3.3 Applicability
	5.3.4 Structure
	5.3.5 Collaboration
	5.3.6 Implementation
	5.3.7 Sample code
	5.3.8 Printing the environment topology

	5.4 VIP configuration
	5.4.1 Practice name
	5.4.2 Intent
	5.4.3 Applicability
	5.4.4 Structure
	5.4.5 Collaboration
	5.4.6 Implementation
	5.4.7 Sample code

	5.5 Data conversion
	5.5.1 Practice name
	5.5.2 Intent
	5.5.3 Applicability
	5.5.4 Structure
	5.5.5 Collaboration
	5.5.6 Implementation
	5.5.7 Sample code

	5.6 TLM to channel
	5.6.1 Practice name
	5.6.2 Intent
	5.6.3 Applicability
	5.6.4 Structure
	5.6.5 Collaboration
	5.6.6 Implementation
	5.6.7 Sample code

	5.7 Channel to TLM
	5.7.1 Practice name
	5.7.2 Intent
	5.7.3 Applicability
	5.7.4 Structure
	5.7.5 Collaboration
	5.7.6 Implementation
	5.7.7 Sample code

	5.8 Analysis to channel / Channel to analysis
	5.8.1 Practice name
	5.8.2 Intent
	5.8.3 Applicability
	5.8.4 Structure
	5.8.5 Collaboration
	5.8.6 Implementation
	5.8.7 Sample code

	5.9 Notify to analysis / Analysis to notify
	5.9.1 Practice name
	5.9.2 Intent
	5.9.3 Applicability
	5.9.4 Structure
	5.9.5 Collaboration
	5.9.6 Implementation
	5.9.7 Sample code

	5.10 Callback adapter
	5.10.1 Practice name
	5.10.2 Intent
	5.10.3 Applicability
	5.10.4 Structure
	5.10.5 Collaboration
	5.10.6 Implementation
	5.10.7 Sample code

	5.11 Sequence and scenario composition
	5.11.1 Practice name
	5.11.2 Intent
	5.11.3 Applicability
	5.11.4 Structure
	5.11.5 Collaboration
	5.11.6 Implementation
	5.11.7 Sample code

	5.12 Messaging
	5.12.1 Practice name
	5.12.2 Intent
	5.12.3 Applicability
	5.12.4 Structure
	5.12.5 Collaboration
	5.12.6 Implementation
	5.12.7 Sample code

	6. Application programming interface (API)
	6.1 Common parameters
	6.1.1 OVM
	6.1.2 OVM_REQ
	6.1.3 OVM_RSP
	6.1.4 VMM
	6.1.5 VMM_REQ
	6.1.6 VMM_RSP
	6.1.7 OVM2VMM
	6.1.8 OVM2VMM_REQ
	6.1.9 OVM2VMM_RSP
	6.1.10 VMM2OVM
	6.1.11 VMM2OVM_REQ
	6.1.12 VMM2OVM_RSP

	6.2 avt_converter #(IN,OUT)
	6.2.1 Declaration
	6.2.2 Parameters
	6.2.3 Methods

	6.3 avt_match_ovm_id
	6.3.1 Declaration
	6.3.2 Parameters
	6.3.3 Methods

	6.4 avt_ovm_vmm_env
	6.4.1 Hierarchy
	6.4.2 Declaration
	6.4.3 Methods
	6.4.4 Variables

	6.5 avt_vmm_ovm_env
	6.5.1 Hierarchy
	6.5.2 Declaration
	6.5.3 Methods
	6.5.4 Macros

	6.6 avt_tlm2channel
	6.6.1 Hierarchy
	6.6.2 Declaration
	6.6.3 Parameters
	6.6.4 Communication interfaces
	6.6.5 Methods
	6.6.6 Variables

	6.7 avt_channel2tlm
	6.7.1 Hierarchy
	6.7.2 Declaration
	6.7.3 Parameters
	6.7.4 Communication interfaces
	6.7.5 Methods
	6.7.6 Variables

	6.8 avt_analysis_channel
	6.8.1 Hierarchy
	6.8.2 Declaration
	6.8.3 Parameters
	6.8.4 Communication interfaces
	6.8.5 Methods

	6.9 avt_analysis2notify
	6.9.1 Hierarchy
	6.9.2 Declaration
	6.9.3 Parameters
	6.9.4 Communication interfaces
	6.9.5 Methods
	6.9.6 Variables

	6.10 avt_notify2analysis
	6.10.1 Hierarchy
	6.10.2 Declaration
	6.10.3 Parameters
	6.10.4 Communication interfaces
	6.10.5 Methods
	6.10.6 Variables

	Appendix A - Bibliography

